Частота дискретизации это в информатике

Частота дискретизации это в информатике

Звуковая информация. Звук представляет собой распространяющуюся в воздухе, воде или другой среде волну с непрерывно меняющейся интенсивностью и частотой.

Человек воспринимает звуковые волны (колебания воздуха) с помощью слуха в форме звука различных громкости и тона. Чем больше интенсивность звуковой волны, тем громче звук, чем больше частота волны, тем выше тон звука (рис. 1.1).

Рис. 1.1. Зависимость громкости и высоты тона звука от интенсивности и частоты звуковой волны

Человеческое ухо воспринимает звук с частотой от 20 колебаний в секунду (низкий звук) до 20 000 колебаний в секунду (высокий звук).

Человек может воспринимать звук в огромном диапазоне интенсивностей, в котором максимальная интенсивность больше минимальной в 10 14 раз (в сто тысяч миллиардов раз). Для измерения громкости звука применяется специальная единица "децибел" (дбл) (табл. 5.1). Уменьшение или увеличение громкости звука на 10 дбл соответствует уменьшению или увеличению интенсивности звука в 10 раз.

Таблица 5.1. Громкость звука
Звук Громкость в децибелах
Нижний предел чувствительности человеческого уха
Шорох листьев 10
Разговор 60
Гудок автомобиля 90
Реактивный двигатель 120
Болевой порог 140

Временная дискретизация звука. Для того чтобы компьютер мог обрабатывать звук, непрерывный звуковой сигнал должен быть преобразован в цифровую дискретную форму с помощью временной дискретизации. Непрерывная звуковая волна разбивается на отдельные маленькие временные участки, для каждого такого участка устанавливается определенная величина интенсивности звука.

Таким образом, непрерывная зависимость громкости звука от времени A(t) заменяется на дискретную последовательность уровней громкости. На графике это выглядит как замена гладкой кривой на последовательность "ступенек" (рис. 1.2).

Рис. 1.2. Временная дискретизация звука

Частота дискретизации. Для записи аналогового звука и г го преобразования в цифровую форму используется микрофон, подключенный к звуковой плате. Качество полученного цифрового звука зависит от количества измерений уровня громкости звука в единицу времени, т. е. частоты дискретизации. Чем большее количество измерений производится за I секунду (чем больше частота дискретизации), тем точнее "лесенка" цифрового звукового сигнала повторяет кривую диалогового сигнала.

Частота дискретизации звука — это количество измерений громкости звука за одну секунду.

Частота дискретизации звука может лежать в диапазоне от 8000 до 48 000 измерений громкости звука за одну секунду.

Глубина кодирования звука. Каждой "ступеньке" присваивается определенное значение уровня громкости звука. Уровни громкости звука можно рассматривать как набор возможных состояний N, для кодирования которых необходимо определенное количество информации I, которое называется глубиной кодирования звука.

Глубина кодирования звука — это количество информации, которое необходимо для кодирования дискретных уровней громкости цифрового звука.

Если известна глубина кодирования, то количество уровней громкости цифрового звука можно рассчитать по формуле N = 2 I . Пусть глубина кодирования звука составляет 16 битов, тогда количество уровней громкости звука равно:

N = 2 I = 2 16 = 65 536.

В процессе кодирования каждому уровню громкости звука присваивается свой 16-битовый двоичный код, наименьшему уровню звука будет соответствовать код 0000000000000000, а наибольшему — 1111111111111111.

Качество оцифрованного звука. Чем больше частота и глубина дискретизации звука, тем более качественным будет звучание оцифрованного звука. Самое низкое качество оцифрованного звука, соответствующее качеству телефонной связи, получается при частоте дискретизации 8000 раз в секунду, глубине дискретизации 8 битов и записи одной звуковой дорожки (режим "моно"). Самое высокое качество оцифрованного звука, соответствующее качеству аудио-CD, достигается при частоте дискретизации 48 000 раз в секунду, глубине дискретизации 16 битов и записи двух звуковых дорожек (режим "стерео").

Необходимо помнить, что чем выше качество цифрового звука, тем больше информационный объем звукового файла. Можно оценить информационный объем цифрового стереозвукового файла длительностью звучания 1 секунда при среднем качестве звука (16 битов, 24 000 измерений в секунду). Для этого глубину кодирования необходимо умножить на количество измерений в 1 секунду й умножить на 2 (стереозвук):

16 бит × 24 000 × 2 = 768 000 бит = 96 000 байт = 93,75 Кбайт.

Звуковые редакторы. Звуковые редакторы позволяют не только записывать и воспроизводить звук, но и редактировать его. Оцифрованный звук представляется в звуковых редакторах в наглядной форме, поэтому операции копирования, перемещения и удаления частей звуковой дорожки можно легко осуществлять с помощью мыши. Кроме того, можно накладывать звуковые дорожки друг на друга (микшировать звуки) и применять различные акустические эффекты (эхо, воспроизведение в обратном направлении и др.).

Звуковые редакторы позволяют изменять качество цифрового звука и объем звукового файла путем изменения частоты дискретизации и глубины кодирования. Оцифрованный звук можно сохранять без сжатия в звуковых файлах в универсальном формате WAV или в формате со сжатием МР3.

При сохранении звука в форматах со сжатием отбрасываются "избыточные" для человеческого восприятия звуковые частоты с малой интенсивностью, совпадающие по времени со звуковыми частотами с большой интенсивностью. Применение такого формата позволяет сжимать звуковые файлы в десятки раз, однако приводит к необратимой потере информации (файлы не могут быть восстановлены в первоначальном виде).

1. Как частота дискретизации и глубина кодирования влияют на качество цифрового звука?

1.22. Задание с выборочным ответом. Звуковая плата производит двоичное кодирование аналогового звукового сигнала. Какое количество информации необходимо для кодирования каждого из 65 536 возможных уровней интенсивности сигнала?
1) 16 битов; 2) 256 битов; 3) 1 бит; 4) 8 битов.

1.23. Задание с развернутым ответом. Оценить информационный объем цифровых звуковых файлов длительностью 10 секунд при глубине кодирования и частоте дискретизации звукового сигнала, обеспечивающих минимальное и максимальное качество звука:
а) моно, 8 битов, 8000 измерений в секунду;
б) стерео, 16 битов, 48 000 измерений в секунду.

Читайте также:  Где находится мои закладки в вконтакте

1.24. Задание с развернутым ответом. Определить длительность звукового файла, который уместится на дискете 3,5" (учтите, что для хранения данных на такой дискете выделяется 2847 секторов объемом 512 байтов каждый):
а) при низком качестве звука: моно, 8 битов, 8000 измерений в секунду;
б) при высоком качестве звука: стерео, 16 битов, 48 000 измерений в секунду.

Звук – это звуковая волна, у которой непрерывно меняется амплитуда и частота. При этом амплитуда определяет громкость звука, а частота — его тон. Чем больше амплитуда звуковых колебаний, тем он громче. А частота писка комара больше частоты сигнала автомобиля. Частоту измеряют в Герцах. 1Гц — это одно колебание в секунду.

Кодирование звука.

Компьютер является мощнейшим устройством для обработки различных типов информации, в том числе и звуковой. Но аналоговый звук непригоден для обработки на компьютере, его необходимо преобразовать в цифровой. Для этого используются специальные устройства — аналого-цифровые преобразователи или АЦП. В компьютере роль АЦП выполняет звуковая карта. Каким же образом АЦП преобразует сигнал из аналогового в цифровой вид? Давайте разберемся.

Пусть у нас есть источник звука с частотой 440Гц, пусть это будет гитара. Сначала звук нужно превратить в электрический сигнал. Для этого используем микрофон. На выходе микрофона мы получим электрический сигнал с частотой 440Гц. Графически он выглядит таким образом:

Следующая задача — преобразовать этот сигнал в цифровой вид, то есть в последовательность цифр. Для этого используется временная дискретизация — аналоговый звуковой сигнал разбивается на отдельные маленькие временные участки и для каждого такого участка устанавливается определенная величина интенсивности звука, которая зависит от амплитуды. Другими словами через какие-то промежутки времени мы измеряем уровень аналогового сигнала. Количество таких измерений за одну секунду называется частотой дискретизации. Частота дискретизации измеряется в Герцах. Соответственно, если мы будет измерять наш сигнал 100 раз в секунду, то частота дискретизации будет равна 100Гц.

Вот примеры некоторых используемых частот дискретизации звука:

  • 8 000 Гц — телефон, достаточно для речи;
  • 11 025 Гц;
  • 16 000 Гц;
  • 22 050 Гц — радио;
  • 32 000 Гц;
  • 44 100 Гц — используется в Audio CD;
  • 48 000 Гц — DVD, DAT;
  • 96 000 Гц — DVD-Audio (MLP 5.1);
  • 192 000 Гц — DVD-Audio (MLP 2.0);
  • 2 822 400 Гц — SACD, процесс однобитной дельта-сигма модуляции, известный как DSD — Direct Stream Digital, совместно разработан компаниями Sony и Philips;
  • 5,644,800 Гц — DSD с удвоенной частотой дискретизации, однобитный Direct Stream Digital с частотой дискретизации вдвое больше, чем у SACD. Используется в некоторых профессиональных устройствах записи DSD.

В итоге наш аналоговый сигнал превратится в цифровой, а график станет уже не гладким, а ступенчатым, дискретным:

Глубина кодирования звука — это количество возможных уровней сигнала. Другими словами глубина кодирования это точность измерения сигнала. Глубина кодирования измеряется в битах. Например, если количество возможных уровней сигнала равно 255, то глубина кодирования такого звука 8 бит. 16-битный звук уже позволяет работать с 65536 уровнями сигнала. Современные звуковые карты обеспечивают глубину кодирования в 16 и даже 24 бита, а это возможность кодирования 65536 и 16 777 216 различных уровней громкости соответственно.

Зная глубину кодирования, можно легко узнать количество уровней сигнала цифрового звука. Для этого используем формулу:

где N — количество уровней сигнала, а i — глубина кодирования.

Например, мы знаем, что глубина кодирования звука 16 бит. Значит количество уровней цифрового сигнала равно 2 16 =65536.

Чтобы определить глубину кодирования если известно количество возможных уровней применяют эту же формулу. Например, если известно, что сигнал имеет 256 уровней сигнала, то глубина кодирования составит 8 бит, так как 2 8 =256.

Как понятно из данного вышеприведенного рисунка, чем чаще мы будем измерять уровень сигнала, т.е. чем выше частота дискретизации и чем точнее мы будем его измерять, тем более график цифрового сигнала будет похож на аналоговый график, соответственно, тем выше качество цифрового звука мы получим. И тем больший объем будет иметь файл.

Кроме того, мы рассматривали монофонический (одноканальный) звук, если же звук стереофонический, то размер файла увеличивается в 2 раза, так как он содержит 2 канала.

Рассмотрим пример задачи.

Какой объем будет иметь звуковой монофонический файл содержащий звук, если длительность звука 1 минута, глубина кодирования 8 бит, а частота дискретизации 22050Гц?

Зная частоту дискретизации и длительность звука легко установить количество измерений уровня сигнала за все время. Если частота дискретизации 22050Гц — значит за 1 секунду происходит 22050 измерений, а за минуту таких измерений будет 22050*60=1 323 000.

На одно измерение требуется 8 бит памяти, следовательно на 1 323 000 измерений потребуется 1 323 000*8 = 10 584 000 бит памяти. Разделив полученное число на 8 получим объем файла в байтах — 10584000/8=1 323 000 байт. Далее, разделив полученное число на 1024 получим объем файла в килобайтах — 1 291,9921875 Кбайт. А разделив полученное число еще раз на 1024 и округлив до сотых получим размер файла в мегабайтах — 1 291,9921875/1024=1,26Мбайт.

1. Общие сведения

Сложность: базовая.

Примерное время решения (для тех, кто будет выполнять часть 2): 2 минуты

Тема: Создание и обработка графической и мультимедийной информации

Подтема: Цифровая звукозапись

Что проверяется: Умение оценивать количественные характеристики процесса записи звука.

Краткие теоретические сведения: Поскольку данный тип задания является новым в КИМ ЕГЭ, приведем (пока без обоснования, обоснование ниже) математическую модель процесса звукозаписи:

Читайте также:  Принтер не печатает больше одной копии

N = k * F * L *T (1)

  • N – размер файла (в битах) , содержащего запись звука;
  • k — количество каналов записи (например, 1 – моно, 2 – стерео, 4 – квадро и т.д.);
  • F – частота дискретизации (в герцах), т.е. количество значений амплитуды звука фиксируемых за одну секунду;
  • L – разрешение, т.е. число бит, используемых для хранения каждого измеренного значения;
  • T – продолжительность звукового фрагмента (в секундах).

Как может выглядеть задание? Например, так: Заданы значения всех требуемых параметров процесса звукозаписи, кроме одного. Требуется оценить значение оставшегося параметра, например, размер файла или продолжительность звукового фрагмента.

Производится одноканальная (моно) звукозапись с частотой дискретизации 16 кГц и 24-битным разрешением. Запись длится 1 минуту, ее результаты записываются в файл, сжатие данных не производится. Какая из приведенных ниже величин наиболее близка к размеру полученного файла?

2. Пример задания

2.1. Условие задачи.

Производится одноканальная (моно) звукозапись с частотой дискретизации 16 кГц и 24-битным разрешением. Запись длится 1 минуту, ее результаты записываются в файл, сжатие данных не производится. Какая из приведенных ниже величин наиболее близка к размеру полученного файла?

1) 0,2 Мбайт 2) 2 Мбайт 3) 3 Мбайт 4) 4 Мбайт

Приводим исходные данные к размерности биты-секунды-герцы и проводим расчеты по формуле (1):

Дано:

k = 1, т.к. одноканальная (моно) звукозапись;

F = 16 кГц = 16 000 Гц;

Найти N

Подставляем значение известных параметров в формулу (1)

= 2 4 *(2 3 *125)*(2 3 *3)* )*(2 2 * 15) = 2 12 *5625 (бит)=

= 2 12 *5625 бит = (2 12 *5625)/2 3 байт = 2 9 *5625 байт =

= (2 9 *5625)/ 2 20 Мбайт = 5625/2 11 Мбайт = 5625/2048 Мбайт.

Число 5625/2048 находится между числами 2 и 3. При этом оно ближе к 3, чем к 2, т.к. 3 * 2048 – 5625 1000.

Правильный вариант ответа: №3 (3 Мбайт)

Замечание. Другая идея решения приведена в п.3.3

3. Советы учителям и ученикам

3.1 Какие знания/умения/навыки нужны ученику, чтобы решить эту задачу

1) Не следует «зазубривать» формулу (1). Ученик, представляющий суть процесса цифровой звукозаписи, должен быть способен самостоятельно её сформулировать.

2) Необходимо умение записывать значения параметров в требуемой размерности, а также элементарные арифметические навыки, в т.ч. оперирование со степенями двойки.

3.2. Рекомендации для учителей: как разбирать задачу с учениками

Эти рекомендации – не догма, а попытка сделать выводы из собственного опыта. Ждем комментариев и Ваших рекомендаций.

А. Сильные ученики.

1. Скорее всего, они и так решат эту задачу.

2. Можно дать задание ученикам проверить формулу (1) на практике, записывая в файл звук с микрофона. При этом следует учесть, что она справедлива только в том случае, если записываемая информация не подвергается сжатию (формат WAV (PCM) без сжатия). Если используются аудиоформаты со сжатием (WMA, MP3), то объем получившегося файла будет по понятным причинам существенно меньше расчетного. Для экспериментов с цифровой звукозаписью можно использовать свободно распространяемый аудиоредактор Audacity (http://audacity.sourceforge.net/).

3. Целесообразно подчеркнуть концептуальную общность растрового представления звука и изображения, являющихся разновидностями одного и того же процесса приближенного представления непрерывного сигнала последовательность коротких дискретных сигналов, т.е. оцифровывания на основе дискретизации. В случае растрового изображения производится двумерная дискретизизация яркости в пространстве, в случае звука – одномерная дискретизация по времени. И в том, и в другом случае повышение частоты дискретизации (количества пикселей или звуковых отсчетов) и/или увеличение количества битов для представления одного отсчета (разрядность цвета или звука) ведет к повышению качества оцифровки, при одновременном росте размера файла с цифровым представлением. Отсюда – необходимость сжатия данных.

4. Желательно упомянуть об альтернативных способах оцифровки звука – запись «партий» инструментов в MIDI-формате. Здесь уместно провести аналогию с растровым и векторным представлением изображений.

Б. Не столь сильные ученики.

1. Необходимо обеспечить усвоение соотношения (1). Рекомендуется дать задания типа «Как изменится объем файла, если время записи звучания увеличить/уменьшить в p раз? »,

«Во сколько раз можно увеличить/уменьшить продолжительность записи, если максимальный размер файла увеличить/уменьшить в p раз? », «Как изменится объем файла, если количество бит для записи одного значения увеличить/уменьшить в p раз?» и т.д.

2. Необходимо убедиться, что учащиеся свободно оперируют размерностями, знают, что в Мбайте 2 23 бит и т.д.

3. Необходимо убедиться, что учащиеся достаточно арифметически грамотны, свободно владеют устным счетом со степенями двойки (умножение, деление, выделение сомножителей, представляющих собой 2 n ).

4. Придумывайте свои подходы и пробуйте их.

3.3. Полезный прием.

В подобных задачах часто возникают степени двойки. Перемножать и делить степени проще, чем произвольные числа: умножение и деление степеней сводится к сложению и вычитанию показателей.

Заметим, что числа 1000 и 1024 отличаются менее, чем на 3%, числа 60 и 64 отличаются менее, чем на 7%. Поэтому можно поступить так. Провести вычисления, заменив 1000 на 1024 = 2 10 и 60 на 64 = 2 6 , используя преимущества операций со степенями. Ближайший к полученному числу ответ и будет искомым. Можно после этого перепроверить себя, проведя точные вычисления. Но можно учесть, что общая погрешность вычислений при нашем приближении не превышает 10%. Действительно, 60*1000 = 60000; 64*1024=65536;

60000 > 0.9 * 65536 = 58982.4

Таким образом, правильный результат умножений по формуле (1) немного больше, чем 90% от полученного приближенного результата. Если учет погрешности не меняет результата – можно не сомневаться в ответе.

Пример. (ege.yandex.ru, вариант 1).

Производится двухканальная (стерео) звукозапись с частотой дискретизации 16 кГц и 32-битным разрешением. Запись длится 12 минут, ее результаты записываются в файл, сжатие данных не производится. Какая из приведенных ниже величин наиболее близка к размеру полученного файла?

Читайте также:  Как сделать название гистограммы в excel

1) 30 Мбайт 2) 60 Мбайт 3) 75 Мбайт 4) 90 Мбайт

Решение. Размер записи в битах равен

С учетом замены 1000 на 1024=2 10 и 60 на 64=2 6 получим:

2 1 *2 4 *2 10 *2 5 *3*2 2 *2 6 =3*2 28

Как известно, 1 Мбайт = 2 20 байт = 2 23 бит. Поэтому 3*2 28 бит = 3*32 = 96 Мбайт. Уменьшив это число на 10%, получим 86.4 Мбайт. В обоих случаях ближайшей величиной является 90 Мбайт.

Правильный ответ: 4

3.4. Рекомендации для учеников: как решать подобные задачи

1. Прочитайте условие задачи. Выразите неизвестный параметр через известные. Особое внимание обратите, на размерность известных параметров. Она должна быть – биты-секунды-герцы (напомним, что 1 Гц = с -1 ). При необходимости, приведите значения параметров к нужной размерности, так же как это делается в задачах по физике.

2. Проводите вычисления, стараясь выделять степени двойки.

3. Обратите внимание, что в условии требуется выбрать наиболее подходящий ответ, поэтому высокая точность вычислений до знаков после запятой не требуется. Как только стало ясно, какой из вариантов ответов наиболее близок к вычисляемому значению, вычисления следует прекратить. Если расхождение со всеми вариантами ответов очень велико (в разы или на порядок), то вычисления надо перепроверить.

4. Задачи для самостоятельного решения

4.1. Клоны задачи 2012-А8-1.

Ниже приведены еще четыре варианта задачи 2012-А8-1.

А) Производится одноканальная (моно) звукозапись с частотой дискретизации 32 кГц и 24-битным разрешением. Запись длится 15 секунд, ее результаты записываются в файл, сжатие данных не производится. Какая из приведенных ниже величин наиболее близка к размеру полученного файла?

1) 1,5 Мбайт 2) 3 Мбайт 3) 6 Мбайт 4) 12 Мбайт

Б) Производится двухканальная (стерео) звукозапись с частотой дискретизации 32 кГц и 24-битным разрешением. Запись длится 30 секунд, ее результаты записываются в файл, сжатие данных не производится. Какая из приведенных ниже величин наиболее близка к размеру полученного файла?

1) 1,5 Мбайт 2) 3 Мбайт 3) 6 Мбайт 4) 12 Мбайт

В) Производится одноканальная (моно) звукозапись с частотой дискретизации 16 кГц и 32-битным разрешением. Запись длится 2 минуты, ее результаты записываются в файл, сжатие данных не производится. Какая из приведенных ниже величин наиболее близка к размеру полученного файла?

1) 2 Мбайт 2) 4 Мбайт 3) 8 Мбайт 4) 16 Мбайт

Г) Производится одноканальная (моно) звукозапись с частотой дискретизации 16 кГц и 32-битным разрешением. Запись длится 4 минуты, ее результаты записываются в файл, сжатие данных не производится. Какая из приведенных ниже величин наиболее близка к размеру полученного файла?

1) 2 Мбайт 2) 4 Мбайт 3) 8 Мбайт 4) 16 Мбайт

4.2. Задача 2012-А8-2(обратная к предыдущей).

A) Производится одноканальная (моно) звукозапись с частотой дискретизации 16 кГц и 24-битным разрешением. Результаты записываются в файл, размер которого не может превышать 8 Мбайт, сжатие данных не производится. Какая из приведенных ниже величин наиболее близка к максимально возможной длительности записываемого звукового фрагмента?

1) 1минута 2) 30 секунд 3) 3 минуты 4) 90 секунд

Б) Производится двухканальная (стерео) звукозапись с частотой дискретизации 16 кГц и 24-битным разрешением. Результаты записываются в файл, размер которого не может превышать 8 Мбайт, сжатие данных не производится. Какая из приведенных ниже величин наиболее близка к максимально возможной длительности записываемого звукового фрагмента?

1) 1минута 2) 30 секунд 3) 3 минуты 4) 90 секунд

В) Производится одноканальная (моно) звукозапись с частотой дискретизации 48 кГц и 8-битным разрешением. Результаты записываются в файл, размер которого не может превышать 2,5 Мбайт, сжатие данных не производится. Какая из приведенных ниже величин наиболее близка к максимально возможной длительности записываемого звукового фрагмента?

1) 1минута 2) 30 секунд 3) 3 минуты 4) 90 секунд

Г) Производится одноканальная (моно) звукозапись с частотой дискретизации 48 кГц и 16-битным разрешением. Результаты записываются в файл, размер которого не может превышать 5 Мбайт, сжатие данных не производится. Какая из приведенных ниже величин наиболее близка к максимально возможной длительности записываемого звукового фрагмента?

1) 1минута 2) 30 секунд 3) 3 минуты 4) 90 секунд

5.Дополнение. Некоторые сведения о цифровой звукозаписи.

Распространение звука в воздухе можно рассматривать как распространение колебаний давления. Микрофон преобразует колебания давления в колебания электрического тока. Это аналоговый непрерывный сигнал. Звуковая плата обеспечивает дискретизацию входного сигнала от микрофона. Это делается следующим образом – непрерывный сигнал заменяется последовательностью измеренных с определенной точностью значений.

График аналогового сигнала:

Дискретное представление этого же сигнала (41 измеренное значение):

Дискретное представление этого же сигнала (161 измеренное значение, более высокая частота дискретизации):

Видно, что чем выше частота дискретизации, тем выше качество приближенного (дискретного) сигнала. Кроме частоты дискретизации, на качество оцифрованного сигнала влияет количество двоичных разрядов, отводимых для записи каждого значения сигнала. Чем больше бит отводится под каждое значение, тем более точно можно оцифровать сигнал.

Пример 2-х битного представления этого же сигнала (двумя разрядами можно пронумеровать только 4 возможных уровня величины сигнала):

Теперь можно выписать зависимость для размера файла с оцифрованным звуком

Учитывая возможность одновременной записи звука с нескольких микрофонов (стерео-, квадро- запись и т.д.), что делается для усиления реалистичности при воспроизведении, получаем формулу (1).

При воспроизведении звука цифровые значения преобразуются в аналоговые. Электрические колебания, передаваемые на динамики, преобразуются ими снова в колебания давления воздуха.

Ссылка на основную публикацию
Функции в вольфрам математика
Функции пользователя Хотя в систему входят многие сотни встроенных функций (начиная от элементарных и кончая специальными математическими функциями и системными...
Учимся рисовать в paint
Серия видео уроков «Создание компьютерного рисунка в программе Paint» МОУ «Межборская средняя общеобразовательная школа» (Уроки предназначены для детей 9-12 лет,...
Учиться без троек сканворд
Музыкант, играющий на барабанах, тарелках Передовой работник производства (ударник) Часть затвора стрелкового оружия (ударник) "Барабанщик" коммунистического труда (устар.) (ударник) "Барабанщик"...
Функция abs в паскале
Возвращает абсолютную величину параметра. Объявление Function Abs(X) : (тип параметра); Режим Windows, Real, Protected Замечания Параметр X — выражение вещественного...
Adblock detector