Число эйлера в степени

Число эйлера в степени

Число e может быть определено несколькими способами.

  • Через предел: (второй замечательный предел).
  • Как сумма ряда: или .
  • Как единственное число a, для которого выполняется
  • Как единственное положительное число a, для которого верно

Свойства


  • Данное свойство играет важную роль в решении дифференциальных уравнений. Так, например, единственным решением дифференциального уравнения является функция , где c — произвольная константа.
  • Число eиррационально и даже трансцендентно. Это первое число, которое не было выведено как трансцендентное специально, его трансцендентность была доказана только в 1873 годуШарлем Эрмитом. Предполагается, что e — нормальное число, то есть вероятность появления разных цифр в его записи одинакова.
  • , см. формула Эйлера, в частности
  • Ещё одна формула, связывающая числа е и π, т. н. «интеграл Пуассона» или «интеграл Гаусса»
  • Для любого комплексного числаz верны следующие равенства:
  • Число e разлагается в бесконечную цепную дробь следующим образом: , то есть
  • Представление Каталана:
  • История

    Данное число иногда называют неперовым в честь шотландского учёного Непера, автора работы «Описание удивительной таблицы логарифмов» (1614 год). Однако это название не совсем корректно, так как у него логарифм числа x был равен .

    Впервые константа негласно присутствует в приложении к переводу на английский язык вышеупомянутой работы Непера, опубликованному в 1618 году. Негласно, потому что там содержится только таблица натуральных логарифмов, определённых из кинематических соображений, сама же константа не присутствует (см.: Непер).

    Предполагается, что автором таблицы был английский математик Отред.

    Саму же константу впервые вычислил швейцарский математик Бернулли при анализе следующего предела:

    Первое известное использование этой константы, где она обозначалась буквой b, встречается в письмах Лейбница Гюйгенсу, 1690—1691 годы.

    Букву e начал использовать Эйлер в 1727 году, а первой публикацией с этой буквой была его работа «Механика, или Наука о движении, изложенная аналитически» 1736 год. Соответственно, e обычно называют числом Эйлера. Хотя впоследствии некоторые учёные использовали букву c, буква e применялась чаще и в наши дни является стандартным обозначением.

    Читайте также:  Как отключить переднюю панель звука windows 7

    Почему была выбрана именно буква e, точно неизвестно. Возможно, это связано с тем, что с неё начинается слово exponential («показательный», «экспоненциальный»). Другое предположение заключается в том, что буквы a, b, c и d уже довольно широко использовались в иных целях, и e была первой «свободной» буквой. Неправдоподобно предположение, что Эйлер выбрал e как первую букву в своей фамилии (нем. Euler ).

    Способы запоминания

    • Для получения приблизительного значения нужно выписать подряд цифры, выражающие число букв в словах следующего стишка, и поставить запятую после первого знака: «Мы порхали и блистали, но застряли в перевале; не признали наши крали авторалли».
    • Стишок:

    Два и семь, восемнадцать, Двадцать восемь, восемнадцать, Двадцать восемь, сорок пять, Девяносто, сорок пять.

    • Легко запомнить как 2, далее запоминаем 71, потом повторяющиеся 82, 81, 82
    • Число e можно запомнить по следующему мнемоническому правилу: два и семь, далее два раза год рождения Льва Толстого (1828), затем углы равнобедренного прямоугольного треугольника (45, 90 и 45 градусов). Стихотворная мнемофраза, иллюстрирующая часть этого правила: «Экспоненту помнить способ есть простой: две и семь десятых, дважды Лев Толстой»
    • Цифры 45, 90 и 45 можно запоминать как «год победы над фашистской Германией, затем дважды этот год и снова он»
    • В другом варианте правила e связывается с президентом СШАЭндрю Джексоном: 2 — столько раз избирался, 7 — он был седьмым президентом США, 1828 — год его избрания, повторяется дважды, поскольку Джексон дважды избирался. Затем — опять-таки равнобедренный прямоугольный треугольник.

    Доказательство иррациональности

    Пускай рационально. Тогда , где и целые положительные, откуда

    Умножая обе части уравнения на , получаем

    Переносим в левую часть:

    Все слагаемые правой части целые, следовательно:

    — целое

    Но с другой стороны

    Интересные факты

    • В IPO компании 2004 году было объявлено о намерении компании увеличить свою прибыль на 2 718 281 828 долларов. Заявленная цифра представляет собой первые 10 цифр известной математической константы.
    • В языках программирования символу e в экспоненциальных записях числовых литералов соответствует число 10, а не Эйлерово число. Это связано с историей создания и использования языка для математических вычислений FORTRAN[2] :
    Читайте также:  Телефон не подключается к колонке по блютузу

    Я начал программировать в 1960 году на FORTRAN II, используя компьютер IBM 1620. В то время, в 60-е и 70-е годы, FORTRAN использовал только заглавные буквы. Возможно, это произошло потому, что большинство старых устройств ввода были телетайпами, работавшими с 5-битовым кодом Бодо, который не поддерживал строчные буквы. Буква E в экспоненциальной записи тоже была заглавной и не смешивалась с основанием натурального логарифма e , которое всегда записывается маленькой буквой. Символ E просто выражал экспоненциальный характер, то есть обозначал основание системы — обычно таким было 10. В те годы программисты широко использовали восьмеричную систему. И хотя я не замечал такого, но если бы я увидел восьмеричное число в экспоненциальной форме, я бы предположил, что имеется в виду основание 8. Первый раз я встретился с использованием маленькой e в экспоненциальной записи в конце 70-х годов, и это было очень неудобно. Проблемы появились потом, когда строчные буквы по инерции перешли в FORTRAN. У нас существовали все нужные функции для действий с натуральными логарифмами, но все они записывались прописными буквами.

    Определение

    Экспоненту обозначают так , или .

    Число e

    Основанием степени экспоненты является число e . Это иррациональное число. Оно примерно равно
    е ≈ 2,718281828459045.

    Число e определяется через предел последовательности. Это, так называемый, второй замечательный предел:
    .

    Также число e можно представить в виде ряда:
    .

    График экспоненты

    На графике представлена экспонента, е в степени х.
    y ( x ) = е х
    На графике видно, что экспонента монотонно возрастает.

    Формулы

    Основные формулы такие же, как и для показательной функции с основанием степени е .

    Выражение показательной функции с произвольным основанием степени a через экспоненту:
    .

    Частные значения

    Пусть y ( x ) = e x . Тогда
    .

    Свойства экспоненты

    Экспонента обладает свойствами показательной функции с основанием степени е > 1 .

    Читайте также:  Стоит ли покупать смартфоны асус

    Область определения, множество значений

    Экспонента y ( x ) = e x определена для всех x .
    Ее область определения:
    – ∞ .
    Ее множество значений:
    0 .

    Экстремумы, возрастание, убывание

    Экспонента является монотонно возрастающей функцией, поэтому экстремумов не имеет. Основные ее свойства представлены в таблице.

    y = е х
    Область определения – ∞
    Область значений
    Монотонность монотонно возрастает
    Нули, y = 0 нет
    Точки пересечения с осью ординат, x = 0 y = 1
    + ∞

    Обратная функция

    Производная экспоненты

    Производная е в степени х равна е в степени х:
    .
    Производная n-го порядка:
    .
    Вывод формул > > >

    Интеграл

    Комплексные числа

    Действия с комплексными числами осуществляются при помощи формулы Эйлера:
    ,
    где есть мнимая единица:
    .

    Выражения через гиперболические функции

    Выражения через тригонометрические функции

    Разложение в степенной ряд

    Использованная литература:
    И.Н. Бронштейн, К.А. Семендяев, Справочник по математике для инженеров и учащихся втузов, «Лань», 2009.

    Автор: Олег Одинцов . Опубликовано: 25-02-2014 Изменено: 09-06-2018

    Основой натурального логарифма является число е (число Эйлера) — математическая константа, равная 2.71828182845905 с пределом (1 + 1/n) n, при этом n — стремится к бесконечности. Возведение числа е в степень означает возведение в степень числа Эйлера e x = exp (x). Число е в 1-й степени, как и любое число в этой степени, будет равно самому себе, т.е. 2.71828182845905. При возведении числа Эйлера (е) в нулевую степень ответ будет равняться 1. При возведении в степень, которая будет больше единицы, ответ будет больше первоначального. Если степень будет больше нуля, но меньше 1 (например, 0,5), то ответ будет больше 1, но меньше первоначального (числа е). При возведении экспоненты в отрицательную степень нужно 1 делить на число е в заданной степени, но со знаком плюс.

    Онлайн калькулятор быстро справится с возведением экспоненты в степень и выдаст точный результат.

    Ссылка на основную публикацию
    Чем отредактировать pdf файл бесплатно
    Онлайн PDF редактор для изменения PDF Защищенная с помощью SSL передача файлов Автоматическое удаление файла с сервера через один час...
    Функции в вольфрам математика
    Функции пользователя Хотя в систему входят многие сотни встроенных функций (начиная от элементарных и кончая специальными математическими функциями и системными...
    Функция abs в паскале
    Возвращает абсолютную величину параметра. Объявление Function Abs(X) : (тип параметра); Режим Windows, Real, Protected Замечания Параметр X — выражение вещественного...
    Чем очистить клей от корпуса телефона
    На сенсорном дисплее телефона после снятия защитной пленки остались большие следы клея. Я понимаю, что не надо было экономить на...
    Adblock detector