Что лучше проводит тепло алюминий или медь

Что лучше проводит тепло алюминий или медь

Все изделия, используемые человеком, способны передавать и сохранять температуру прикасаемого к ним предмета или окружающей среды. Способность отдачи тепла одного тела другому зависит от вида материала, через который проходит процесс. Свойства металлов позволяют передавать тепло от одного предмета другому, с определенными изменениями, в зависимости от структуры и размера металлической конструкции. Теплопроводность металлов — один из параметров, определяющих их эксплуатационные возможности.

Что такое теплопроводность и для чего нужна

Процесс переноса энергии атомов и молекул от горячих предметов к изделиям с холодной температурой, осуществляется при хаотическом перемещении движущихся частиц. Такой обмен тепла зависит от агрегатного состояния металла, через который проходит передача. В зависимости от химического состава материала, теплопроводность будет иметь различные характеристики. Данный процесс называют теплопроводностью, он заключается в передаче атомами и молекулами кинетической энергии, определяющей нагрев металлического изделия при взаимодействии этих частиц, или передается от более теплой части – к той, которая меньше нагрета.

Способность передавать или сохранять тепловую энергию, позволяет использовать свойства металлов для достижения необходимых технических целей в работе различных узлов и агрегатов оборудования, используемого в народном хозяйстве. Примером такого применения может быть паяльник, нагревающийся в средней части и передающий тепло на край рабочего стержня, которым выполняют пайку необходимых элементов. Зная свойства теплопроводности, металлы применяют во всех отраслях промышленности, используя необходимый параметр по назначению.

Понятие термического сопротивления и коэффициента теплопроводности

Если теплопроводность характеризует способность металлов передавать температуру тел от одной поверхности к иной, то термическое сопротивление показывает обратную зависимость, т.е. возможность металлов препятствовать такой передаче, иначе выражаясь, – сопротивляться. Высоким термическим сопротивлением обладает воздух. Именно он, больше всего, препятствует передаче тепла между телами.

Количественную характеристику изменения температуры единицы площади за единицу времени на один градус (К), называют коэффициентом теплопроводности. Международной системой единиц принято измерять этот параметр в Вт/м*град. Эта характеристика очень важна при выборе металлических изделий, которые должны передавать тепло от одного тела к другому.

Коэффициент теплопроводности металлов при температура, °С

От чего зависит показатель теплопроводности

Изучая способность передачи тепла металлическими изделиями выявлено, что теплопроводность зависит от:

  • вида металла;
  • химического состава;
  • пористости;
  • размеров.

Металлы имеют различное строение кристаллической решетки, а это может изменить теплопроводность материала. Так, например, у стали и алюминия, особенности строения микрочастиц влияют по-разному на скорость передачи тепловой энергии через них.

Коэффициент теплопроводности может иметь различные значения для одного и того же металла при изменении температуры воздействия. Это связано с тем, что у разных металлов градус плавления отличается, а значит, при других параметрах окружающей среды, свойства материалов также будут отличаться, а это отразится на теплопроводности.

Методы измерения

Для измерения теплопроводности металлов используют два метода: стационарный и нестационарный. Первый характеризуется достижением постоянной величины изменившейся температуры на контролируемой поверхности, а второй – при частичном изменении таковой.

Стационарное измерение проводится опытным путем, требует большого количества времени, а также применения исследуемого металла в виде заготовок правильной формы, с плоскими поверхностями. Образец располагают между нагретой и охлажденной поверхностью, а после прикосновения плоскостей, измеряют время, за которое заготовка может увеличить температуру прохладной опоры на один градус по Кельвину. Когда рассчитывают теплопроводность, обязательно учитывают размеры исследуемого образца.

Нестационарную методику исследований используют в редких случаях из-за того, что результат, зачастую, бывает необъективным. В наши дни никто, кроме ученых, не занимается измерением коэффициента, все используют, давно выведенные опытным путем, значения для различных материалов. Это обусловлено постоянством данного параметра при сохранении химического состава изделия.

Теплопроводность стали, меди, алюминия, никеля и их сплавов

Обычное железо и цветные металлы имеют разное строение молекул и атомов. Это позволяет им отличаться друг от друга не только механическими, но и свойствами теплопроводности, что, в свою очередь, влияет на применение тех или иных металлов в различных отраслях хозяйства.

Сталь имеет коэффициент теплопроводности, при температуре окружающей среды 0 град. (С), равный 63, а при увеличении градуса до 600, он снижается до 21 Вт/м*град. Алюминий, в таких же условиях, наоборот – увеличит значение от 202 до 422 Вт/м*град. Сплавы из алюминия, будут также повышать теплопроводность, по мере увеличения температуры. Только величина коэффициента будет на порядок ниже, в зависимости от количества примесей, и колебаться в пределах от 100 до 180 единиц.

Медь, при изменении температуры в тех же пределах, будет уменьшать теплопроводность от 393 до 354 Вт/м*град. При этом, медь содержащие сплавы латуни будут иметь такие же свойства, как и алюминиевые, а значение теплопроводности будет изменяться от 100 до 200 единиц, в зависимости от количества цинка и других примесей в составе сплава латуни.

Коэффициент теплопроводности чистого никеля считается низким, он будет менять свое значение от 67 до 57 Вт/м*град. Сплавы с содержанием никеля, будут также иметь коэффициент с пониженным значением, который, благодаря содержанию железа и цинка, колеблется от 20 до 50 Вт/м*град. А наличие хрома, позволит понизить теплопроводность в металлах до 12 единиц, с небольшим увеличением этой величины, при нагреве.

Применение

Агрегатное состояние материалов имеет отличительную структуру строения молекул и атомов. Именно это оказывает большое влияние на металлические изделия и их свойства, в зависимости от назначения.

Отличающийся химический состав узлов и деталей из железа, позволяет обладать различной теплопроводностью. Это связано со структурой таких металлов как чугун, сталь, медь и алюминий. Пористость чугунных изделий способствует медленному нагреванию, а плотность медной структуры – наоборот, ускоряет процесс теплоотдачи. Эти свойства используют для быстрого отвода тепла или постепенного нагревания продукции инертного назначения. Примером использования свойств металлических изделий является:

  • кухонная посуда с различными свойствами;
  • оборудование для пайки труб;
  • утюги;
  • подшипники качения и скольжения;
  • сантехническое оборудование для подогрева воды;
  • приборы отопления.

Медные трубки широко используют в радиаторах автомобильных систем охлаждения и кондиционеров, применяемых в быту. Чугунные батареи сохраняют тепло в квартире, даже при непостоянной подаче теплоносителя требуемой температуры. А радиаторы из алюминия, способствуют быстрой передаче тепла отапливаемому помещению.

При возникновении высокой температуры, в результате трения металлических поверхностей, также важно учитывать теплопроводность изделия. В любом редукторе или другом механическом оборудовании, способность отводить тепло, позволит деталям механизма сохранить прочность и не быть подвергнутыми разрушению, в процессе эксплуатации. Знание свойств теплопередачи различных материалов, позволит грамотно применить те или иные сплавы из цветных или черных металлов.

Какой же все таки поставить радиатор? Я думаю каждый из нас задавался таким же вопросом придя на рынок или в магазин запчастей, осматривая огромный выбор радиаторов на любой вкус, удовлетворяющий даже самого извращенного привереды. Хочешь двух рядный, трех рядный, побольше, поменьше, с крупной секцией с мелкой, алюминиевый, медный. Вот именно из какого металла изготовлен радиатор и пойдет речь.

Одни считают, что медь. Это своеобразные староверы, так бы назвали их в XVII веке. Да, если взять не новые автомобили XX века, то тогда повсеместно устанавливались медные радиаторы. Не зависимо от марки и модели, была ли это бюджетная микролитражка или тяжеловесный многотонный грузовик. Но есть и другая армия автовладельцев утверждая что радиаторы изготовленные из алюминия лучше медных. Потому как их устанавливают на новые современные автомобили, на сверхмощные двигатели требующие качественного охлаждения.

И что самое интересное они все правы. И у тех и у других есть свои плюсы и естественно минусы. А теперь небольшой урок физики. Самым отличным показателем, на мой взгляд, являются цифры, а именно коэффициент теплопроводности. Если сказать по простому то это способность вещества передавать тепловую энергию от одного вещества другому. Т.е. у нас имеется ОЖ, радиатор из N-ного металла и окружающая среда. Теоретически чем выше коэффициент тем быстрее радиатор будет забирать тепловую энергию у ОЖ и быстрее отдавать в окружающую среду.

Читайте также:  Xiaomi mi drone характеристики

Итак, теплопроводность меди составляет 401 Вт/(м*К), а алюминия — от 202 до 236 Вт/(м*К). Но это в идеальных условиях. Казалось бы медь выиграла в данном споре, да это "+1" за медные радиаторы. Теперь кроме всего необходимо рассмотреть собственно конструкцию самих радиаторов.

Медные трубки в основе радиатора, так же медные ленты воздушного радиатора для передачи полученного тепла в окружающую среду. Крупные ячейки сот радиатора позволяют снизить потери скорости воздушного потока и позволяют прокачать большой объем воздуха за единицу времени. Слишком малая концентрация ленточной части радиатора снижает эффективность теплопередачи и увеличивает концентрацию и силу локального нагрева радиатора.

Я нашел два вида радиаторов в основе которых лежат алюминиевые и стальные трубки. Вот еще не маловажная часть, т.к. коэффициент теплопроводности стали очень мал по сравнению с алюминием, всего лишь 47 Вт/(м*К). И собственно только из-за высокой разности показателей, уже не стоит устанавливать алюминиевые радиаторы со стальными трубками. Хотя они прочнее чистокровных алюмишек и снижают риски протечки от высокого давления, например при заклинившем клапане в крышке расширительного бачка. Высокая концентрация алюминиевых пластин на трубках увеличивает площадь радиатора обдуваемого воздухом тем самым увеличивая его эффективность, но при этом увеличивается сопротивление воздушного потока и снижается объем прокачиваемого воздуха.

Ценовая политика же на рынке сложилась таким образом что медные радиаторы значительно дороже алюминиевых. Из общей картины можно сделать вывод что и те и другие радиаторы по своему хороши. Какой же все таки выбрать? Этот вопрос остается за вами.

Вот поэтому я и акцентировал на эти слова.

Вопрос, куда и как применять это понятие. Вот паяльник из алюминия делать нельзя, температуры для пайки не хватит, на одном конце 400гр, а на другом будет 60гр. А медь для этого самое то, её теплоемкость прекрасна, что бы один конец имел температуру 400гр, и на другом 300-350гр. Но вот многие этого не понимают и часто рекомендуют в качестве радиаторов для охлаждения транзисторов и прочее, применять именно медь.

Даже часто читал это в радио-журналах. Когда то это не понимали и промышленники, когда начинали делать мощные транзисторы, но потом разобрались и прекратили применять медные или латунные корпуса, а стали применять материал на основе алюминия или его заменители. Когда то с такой же трудностью сам встретился в начале 70х годов.

Был у меня усилитель на КТ805 (стерео) вот один транзистор сгорел и стаял там КТ805БМ, но у меня такого не было, поставил большой КТ805Б. Так он начал сильно греться, и стал с большим трудом держать мощность при радиаторе 10*10*6см. Занимал место пол усилителя, а на родном била алюминиевая полоска Г-образная 2*3см. Спросил своего друга из конструкторского бюро, почему так, внутри у обоих транзисторов один и тот же кристалл, а держат температуру по разному. На что он ответил, что сам корпус накапливает в себе температуру и не отдает её на радиатор, а в БМ нет этого корпуса и температура быстро рассеивается на алюминиевом радиаторе.

Потом стали делать корпуса, на первый взгляд такие же, как у КТ805Б, но состав на основе алюминия и они стали также меньше нагреваться.. Вот поэтому и нужно применять понятие теплоотдача или теплопроводность правильно.

Извини, что так много написал, но думаю это пригодится, если подобное встретится в жизни. И не только в радио, а просто в жизни. Если сделаешь нагреватель для отопления в доме, то будешь применять именно алюминий, а не медь и латунь. (что я сейчас у себя и применяю в отоплении)

Автор: Андрей Бедов [ Пт сен 05, 2014 18:09:28 ]
Заголовок сообщения: Re: Теплопроводность
Котбазилио, Вы написали абсолютную бредятину с точки зрения термодинамики.
Теплопроводность никак не связана с теплопередачей. Эффективность теплопередачи зависит от относительной разности температур двух взаимодействующих тел. В данном случае: "металл с наибольшей разумной теплопроводностью — воздух".
Автор: Kavka [ Пт сен 05, 2014 20:20:42 ]
Заголовок сообщения: Re: Теплопроводность
Поддержу автора предыдущей реплики.

Теперь к тому, что написал Котбазилио про то что грелось и не грелось, или не так сильно грелось при медном и алюминиевом радиаторе/корпусе.

Во-первых.
Способность вещества проводить тепло характеризуется коэффициентом теплопроводности (удельной теплопроводностью). Численно эта характеристика равна количеству теплоты, проходящей через образец материала толщиной 1 м, площадью 1 м.кв., за единицу времени (секунду) при единичном температурном градиенте. Измеряется в Вт/(м*К). Т.е. Чем больше тепловой энергии способно пропустить вещество, тем больше коэффициент теплопроводности. Тут всё по определению и, надеюсь, никто возражать не будет.

Во-вторых, сами транзисторы могли иметь разные характеристики и банальное падение напряжения на них при замене могло быть разным со всеми вытекающими по закону Ома следствиями.
В третьих. Если взять два одинаковых по площади и форме радиатора из меди и алюминия, то при прочих равных условиях у них будет одинаковая теплоотдача. Потому что теплоотдача зависит от площади и разности температур. А более эффективным будет тот радиатор, материал которого сможет переносить больше тепла от охлаждаемой детали к рассеивающим поверхностям, чтобы разность температур была больше. Т.е. более эффективным будет радиатор из материала с больше теплопроводностью. Чем больше теплопроводность, тем меньше термическое сопротивление. Алюминиевый радиатор может быть холоднее медного, но сам транзистор (кристалл) на алюминиевом радиаторе может нагреться сильнее, чем на медном из-за меньшей интенсивности отвода тепла (большего термического сопротивления радиатора).

Как-то так. Вроде всё логично и нигде не напутал.

Автор: Котбазилио [ Пн сен 08, 2014 08:05:45 ]
Заголовок сообщения: Re: Теплопроводность

Теперь можем сравнить медь и алюминий по этим двум таблицам
Теплоемкость Теплопроводность
Медь 0,385 401

Алюминий 0,903 202—236

Что скажите о таких рассуждениях Теплопроводность

А скажу вот что, если Вы сделаете два паяльника из меди и алюминия, то после 30 минут нагрева их выключите, то медный ещё будет горячим, а алюминиевый уже остынет.

Поэтому и применяют алюминий в кухонной посуде, потому что алюминий быстрей передает тепло для варки продуктов. (хотя многие скажут, что это от экономии)

Проверьте на практике, возьмите транзисторную схему (хоть блок питание) и сначала поставьте алюминиевый радиатор и отрегулируйте мощность на нем, что бы транзистор имел 40гр температуру, потом ничего не меняя в параметрах поставьте медный радиатор и транзистар начнет перегреваться.

Такой пример тоже был в моей практике. В 80е годы стало популярно делать электронное зажигание для машины. Я первый собрал такую схему в своём коллективе и там радиатор применил алюминиевую пластину, мои коллеги стали повторять её но один поставил на медную пластину мощный транзистор, (кто то ему так посоветовал) он начал мне доказывать, что схема нерабочая, потому что постоянно сгорает транзистор, тогда я его спросил, а какой радиатор, конечно медный, сказал он. Вот когда я его убедил сменить на алюминиевый, он даже потом удивился и в нос мне тыкал данные из справочников, что медный радиатор лучше отдает тепло.

Читайте также:  Холодильник ока 3 характеристики

Вывод, некоторые понятия, нами понимаются неправильно.

Автор: Dick [ Пн сен 08, 2014 09:56:19 ]
Заголовок сообщения: Re: Теплопроводность

Теперь можем сравнить медь и алюминий по этим двум таблицам
Теплоемкость Теплопроводность
Медь 0,385 401

Алюминий 0,903 202—236

Что скажите о таких рассуждениях Теплопроводность

А скажу вот что, если Вы сделаете два паяльника из меди и алюминия, то после 30 минут нагрева их выключите, то медный ещё будет горячим, а алюминиевый уже остынет.

Для правильного "эксперимента" паяльники должны быть одного веса и иметь одинаковую площадь поверхности
И нагревать их нужно до одинаковой температуры, а не одинаковое время.

Для сравнения эффективности радиаторов площадь их поверхности тоже должна
быть одинаковой.

Автор: mrbot [ Вт сен 09, 2014 00:24:24 ]
Заголовок сообщения: Re: Теплопроводность
У нас назрел серьезный спор! ) Думаю без экспериментов не обойтись, что скажите? У кого какие предложения?
Автор: Rtmip [ Вт сен 09, 2014 02:09:09 ]
Заголовок сообщения: Re: Теплопроводность

Мне в связи с этим интересно понять, почему оверклокеры так любят медь и почему производители кулеров для компа делают свои более дорогие
и эффективные модели либо из меди, либо с медным пятаком? Может кто знает?

Автор: Андрей Бедов [ Вт сен 09, 2014 12:17:59 ]
Заголовок сообщения: Re: Теплопроводность

Ну Вы бы хоть постеснялись такое писать. Термодинамические расчёты при проектировании выполняют одними из первых. И не думайте, что в КБ и НИИ работают люди с четырьмя классами ЦПШ.

Автор: Котбазилио [ Ср сен 10, 2014 06:01:21 ]
Заголовок сообщения: Re: Теплопроводность
Да, но главное в алюминии, это то, что нам нужно в радио, это способность быстро отдавать тепло от деталей. У меня есть сковородка (наверное это от космической промышленности) у неё ручка такая же, как и сама сковородка, на первый взгляд просто алюминий, но вот при жарке на ней продуктов, не нужно брать через тряпочку у неё температура комнатная. Пробовал определить где начинается падение температуры и двигая рукой по этой ручке, тепло начинал чувствовать на расстоянии 2см от самой сковороды. Хотя специально нагревал на газе саму ручку, она так же нагревается в том месте, где её грею. То есть имеет свойства тоже нагреваться, но вот понять, то ли она так быстро отдает тепло, то ли не переносит это тепло, понять не возможно.

Но визуально очень похоже на алюминий.

Автор: Андрей Бедов [ Ср сен 10, 2014 14:33:15 ]
Заголовок сообщения: Re: Теплопроводность
Это говорит как раз о том, что у ручки ХРЕНОВАЯ теплопроводность. Как и должно быть в этом случае.
Если бы ручка была медная, Вы бы её голой рукой, без прихватки, не взяли.
С алюминиевым радиатором так же: теплопроводность его ХУЖЕ, чем у меди. Поэтому транзистор горячий, а рёбра радиатора — холодные. Алюминий не "быстрее отдаёт тепло" в окружающую среду, а тупо хреново пропускает его через себя. Неужели по логике непонятно? Тем более уже и цифры приводили в сравнении с медью. А известно, что чем выше температура рёбер — тем ниже температура транзистора, так-как тепло распределяется между транзистором и радиатором равномернее, и результирующая температура такой системы будет ниже. И с более горячих рёбер тепло уходит интенсивнее. Писал же я выше об этом. А Вы начали обвинять изготовителей медных радиаторов в некомпетентности!
Уже просто странный разговор какой-то получается. Если не сказать больше.
Если бы, допустим, серебро было относительно дёшево, то радиаторы делали бы из него, а не из меди. Потому-что его теплопроводность ещё больше, чем у меди.
Серебряная ложка, опущенная в стакан с киплячою водою, нагревается до пальцев за две секунды. Проверял сам, ложка есть такая у бабуськи, а ей досталась от прабабки, дореволюционная!

А может у медной ручки плохая теплоотдача, поэтому и писал я, что при транзисторе КТ805Б не мог остудить огромный радиатор, а как только я взял КТ805БМ, то маленькая полоска алюминия обеспечивала нормальную температуру у транзистора.

И мой пример с эл. зажиганием в машине Вам не помог, у моего приятеля при использовании медной пластины, транзисторы сгорали, а у меня с алюминием ни один транзистор не сгорел, он тоже потом заменил медь на алюминий и проблема исчезла. Видимо я зря привожу так много доказательств, их Вы не читаете. И зачем тогда изменили состав металла в корпусе транзисторов? Видимо наконец поняли, что на основе меди, корпусы плохо отдают тепло.

Но это понятно, там умные ребята сидят и через пару десятков лет до них тоже дошло, что нужно алюминиевую основу радиатора.

Автор: Котбазилио [ Чт сен 11, 2014 11:18:24 ]
Заголовок сообщения: Re: Теплопроводность
Автор: Котбазилио [ Вт сен 16, 2014 14:07:06 ]
Заголовок сообщения: Re: Теплопроводность
Вы написали своё сообщения, не читая моих. Прочтите снова и не будете такое писать — И что-то я сомневаюсь что КТ805 (808 и другие) делали из алюминия когда-то, по моему всегда основание у них было медным — Это Ваши слова.

Когда это я писал, что эти транзисторы делали из алюминия? Будьте внимательны, когда апеллируете.

Автор: Андрей Бедов [ Вт сен 16, 2014 15:54:37 ]
Заголовок сообщения: Re: Теплопроводность
Я написал свои сообщения, отталкиваясь от ВАШИХ, Котбазилио.
Ещё раз говорю, не "рвите жопу", если нечем крыть!
Уже Вам приводили неоднократные примеры из теории и практики.
Вы же стараетесь это опровергнуть своим "жизненным опытом".
Скажу "по-молодёжному" — забейтесь уже, в своих жалких потугах " кому-то чего-то доказать", что уже и так давно очевидно.
"шиза — наш друг", несмотря и с уважением к Вашему возрасту.

Андрей, дорогой, я удивлен Вашему сообщению и скажу старую мудрость — С КЕМ ПОВЕДЕШЬСЯ ОТ ТОГО И НАБЕРЕШЬСЯ. (не учитесь у плохих дядей плохому)

Посмотрите на своё сообщение, в нём жаргон глупого человека, Вы же умный парень (так мне раньше казалось) Какие Вы приводили примеры из практики и теории. Это я Вам привел бесчисленное количество примеров, где доказывает мою правоту. Ещё раз пишу, почему перестали делать корпуса из меди, а стали применять металл на основе алюминия, который многократно дороже меди?

Я же и марки транзисторов привел. Вы меня разочаровали, если будете общаться в таком тоне, то Вы потеряете своё лицо и . а мне бы не хотелось видеть в Вас такие метаморфозы. Оставайтесь всегда приличным человеком.

Пока ещё с уважением, дядя Валера. (мои дети старше Вас)

Автор: Котбазилио [ Ср сен 17, 2014 05:23:27 ]
Заголовок сообщения: Re: Теплопроводность

У Валеры очередное обострение.
Осеннее.
На сегодняшний день стоимость 1 тонны меди на мировых рынках составляет примерно 7000$ http://fx-commodities.ru/copper/
На сегодняшний день стоимость 1 тонны алюминия на мировых рынках составляет примерно 2000$ http://fx-commodities.ru/aluminium/
Да и не нужно ходить на биржу, чтобы убедиться в разнице в 3,5 раза в пользу МЕДИ. Достаточно посмотреть на цены медных и алюминиевых проводов и цены на медный и алюминиевый (дюралюминиевый) профиль (типа волноводного).

Автор: КРАМ [ Ср сен 17, 2014 05:41:21 ]
Заголовок сообщения: Re: Теплопроводность
Автор: Котбазилио [ Ср сен 17, 2014 06:46:58 ]
Заголовок сообщения: Re: Теплопроводность
Почему то все мои оппоненты не умеют анализировать дискуссию и невнимательно читают сообщения.

Я же написал, что новые транзисторы делаются на основе алюминия, но имеют большую цену, потому что этот металл дороже и алюминия и меди, это особый сплав, который и позволяет им передавать большую теплопроводность. В чистом виде алюминий не прочный и механически легко подвержен деформации.

Поэтому и в автомобилестроении применяют не чистый алюминий, а силумин.

Силуми́н — сплав алюминия с кремнием. Химический состав — 4-22 % Si, основа — Al, незначительное количество примесей Fe, Cu, Mn, Ca, Ti, Zn, и некоторых других. Некоторые силумины модифицируются добавками натрия или лития. Добавка всего 0,05 % лития или 0,1 % натрия позволяет увеличить содержание кремния в эвтектическом сплаве до 14 %. Сплав Al-Si (силумины) обладают наилучшими литейными свойствами. В двойных сплавах Al-Si эвтектика состоит из твердого раствора и кристаллов практически чистого кремния. В легированных силуминах (АК9ч) помимо двойной эвтектики имеются тройные и более сложные эвтектики. В двойных силуминах с увеличением содержания кремния до эвтектического состава снижается пластичность и повышается прочность.

Применяются для литья деталей в авто-, мото- и авиастроении (напр. картеров, блоков цилиндров, поршней), и для производства бытовой техники (теплообменников, мясорубок).

Рекомендованные сообщения

Создайте аккаунт или войдите в него для комментирования

Вы должны быть пользователем, чтобы оставить комментарий

Создать аккаунт

Зарегистрируйтесь для получения аккаунта. Это просто!

Высокая теплопроводность меди наряду с другими замечательными свойствами определила этому металлу значимое место в истории развития человеческой цивилизации. Изделия из меди и ее сплавов используются практически во всех сферах нашей жизни.

1 Медь – коротко про теплопроводность

Теплопроводностью называют процесс переноса энергии частиц (электронов, атомов, молекул) более нагретых участков тела к частицам менее нагретых его участков. Такой теплообмен приводит к выравниванию температуры. Вдоль тела переносится только энергия, вещество не перемещается. Характеристикой способности проводить тепло является коэффициент теплопроводности, численно равный количеству теплоты, которая проходит через материал площадью 1 м 2 , толщиной 1 м, за 1 секунду при единичном градиенте температуры.

Коэффициент теплопроводности меди при температуре 20–100 °С составляет 394 Вт/(м*К) – выше только у серебра. Стальной прокат уступает меди по этому показателю почти в 9 раз, а железо – в 6. Различные примеси по-разному влияют на физические свойства металлов. У меди скорость передачи тепла снижается при добавлении в материал или попадании в результате технологического процесса таких веществ, как:

Высокая теплопроводность характеризуется быстрым распространением энергии нагрева по всему объему предмета. Эта способность обеспечила меди широкое применение в любых системах теплообмена. Ее используют при изготовлении трубок и радиаторов холодильников, кондиционеров, вакуумных установок, автомашин для отвода избыточного тепла охлаждающей жидкости. В отопительных приборах подобные изделия из меди служат для обогрева.

Способность меди проводить тепло снижается при нагреве. Значения коэффициента теплопроводности меди в воздухе зависит от температуры последнего, которая влияет на теплоотдачу (охлаждение). Чем выше температура окружающей среды, тем медленнее остывает металл и ниже его теплопроводность. Поэтому во всех теплообменниках используют принудительный обдув вентилятором – это повышает эффективность работы устройств и одновременно поддерживает тепловую проводимость на оптимальном уровне.

2 Теплопроводность алюминия и меди – какой металл лучше?

Теплопроводность алюминия и меди различна – у первого она меньше, чем у второго, в 1,5 раза. У алюминия этот параметр составляет 202–236 Вт/(м*К) и является достаточно высоким по сравнению с другими металлами, но ниже, чем у золота, меди, серебра. Область применения алюминия и меди, где требуется высокая теплопроводность, зависит от ряда других свойств этих материалов.

Алюминий не уступает меди по антикоррозионным свойствам и превосходит в следующих показателях:

  • плотность (удельный вес) алюминия меньше в 3 раза;
  • стоимость – ниже в 3,5 раза.

Аналогичное изделие, но выполненное из алюминия, значительно легче, чем из меди. Так как по весу металла требуется меньше в 3 раза, а цена его ниже в 3,5 раза, то алюминиевая деталь может быть дешевле примерно в 10 раз. Благодаря этому и высокой теплопроводности алюминий нашел широкое применение при производстве посуды, пищевой фольги для духовок. Так как этот металл мягкий, то в чистом виде не используется – распространены в основном его сплавы (наиболее известный – дюралюминий).

В различных теплообменниках главное – это скорость отдачи избыточной энергии в окружающую среду. Эта задача решается интенсивным обдувом радиатора посредством вентилятора. При этом меньшая теплопроводность алюминия практически не отражается на качестве охлаждения, а оборудование, устройства получаются значительно легче и дешевле (к примеру, компьютерная и бытовая техника). В последнее время в производстве наметилась тенденция к замене в системах кондиционирования медных трубок на алюминиевые.

Медь практически незаменима в радиопромышленности, электронике в качестве токопроводящего материала. Благодаря высокой пластичности из нее можно вытягивать проволоку диаметром до 0,005 мм и делать другие очень тонкие токопроводящие соединения, используемые для электронных приборов. Более высокая, чем у алюминия, проводимость обеспечивает минимальные потери и меньший нагрев радиоэлементов. Теплопроводность позволяет эффективно отводить выделяемое при работе тепло на внешние элементы устройств – корпус, подводящие контакты (к примеру, микросхемы, современные микропроцессоры).

Шаблоны из меди используют при сварке, когда необходимо на стальную деталь сделать наплавку нужной формы. Высока теплопроводность не позволит медному шаблону соединиться с приваренным металлом. Алюминий в таких случаях применять нельзя, так как велика вероятность его расплавления или прожига. Медь также используют при сварке угольной дугой – стержень из этого материала служит неплавящимся катодом.

3 Минусы высокой теплопроводности

Низкая теплопроводность во многих случаях является нужным свойством – на этом основана теплоизоляция. Использование медных труб в системах отопления приводит к гораздо большим потерям тепла, чем при применении магистралей и разводок из других материалов. Медные трубопроводы требуют более тщательной теплоизоляции.

У меди высокая теплопроводность, что обуславливает достаточно сложный процесс монтажных и других работ, имеющих свою специфику. Сварка, пайка, резка меди требует более концентрированного нагрева, чем для стали, и зачастую предварительного и сопутствующего подогрева металла.

При газовой сварке меди необходимо использование горелок мощностью на 1–2 номера выше, чем для стальных деталей такой же толщины. Если медь толще 8–10 мм, рекомендуется работать с двумя или даже тремя горелками (часто сварку производят одной, а другими осуществляют подогрев). Сварочные работы на переменном токе электродами сопровождаются повышенным разбрызгиванием металла. Резак, достаточный для толщины высокохромистой стали в 300 мм, подойдет для резки латуни, бронзы (сплавы меди) толщиной до 150 мм, а чистой меди всего в 50 мм. Все работы связаны с значительно большими затратами на расходные материалы.

4 Как у меди повысить теплопроводность?

Медь – один из главных компонентов в электронике, используется во всех микросхемах. Она отводит и рассеивает тепло, образующееся при прохождении тока. Ограничение быстродействия компьютеров обусловлено увеличением нагрева процессора и других элементов схем при росте тактовой частоты. Разбиение на несколько ядер, работающих одновременно, и другие способы борьбы с перегревом себя исчерпали. В настоящее время ведутся разработки, направленные на получение проводников с более высокой электропроводимостью и теплопроводностью.

Открытый недавно учеными графен способен значительно увеличить теплопроводность медных проводников и их возможность к рассеиванию тепла. При проведении эксперимента слой меди покрыли графеном со всех сторон. Это улучшило теплоотдачу проводника на 25 %. Как объяснили ученые, новое вещество меняет структуру передачи тепла и позволяет энергии двигаться в металле свободнее. Изобретение находится на стадии доработки – при эксперименте использовался медный проводник гораздо больших размеров, чем в процессоре.

Ссылка на основную публикацию
Что если компьютер включается и сразу выключается
Одна из распространенных проблем с компьютером — он включается и сразу выключается (через секунду-другую). Обычно это выглядит следующим образом: нажатие...
Чем отредактировать pdf файл бесплатно
Онлайн PDF редактор для изменения PDF Защищенная с помощью SSL передача файлов Автоматическое удаление файла с сервера через один час...
Чем очистить клей от корпуса телефона
На сенсорном дисплее телефона после снятия защитной пленки остались большие следы клея. Я понимаю, что не надо было экономить на...
Что за номер 800 555
У пользователей часто звонит неизвестный номер 88005551534 или остаются пропущенные звонки. Давайте разберемся какой организации принадлежит этот номер, а ниже...
Adblock detector