Степень с отрицательным показателем
Число с отрицательным показателем степени равно дроби, числителем которой является единица, а знаменателем данное число с положительным показателем.
d -c = | 1 | ; 7 -5 = | 1 | ; a -5 = | 1 |
d c | 7 5 | a 5 |
Чтобы разобраться, почему число в отрицательной степени равно дроби, надо вспомнить правило деления степеней с одинаковыми основаниями:
При делении степеней с одинаковыми основаниями из показателя степени делимого вычитают показатель степени делителя.
Следовательно, если степень делимого будет меньше степени делителя, то в результате получится число с отрицательной степенью:
Если записать деление в виде дроби, то при сокращении в числителе останется 1, а в знаменателе число будет иметь положительную степень:
a 5 | = | 1 |
a 8 | a 3 |
a -3 = | 1 |
a 3 |
Действия над степенями с отрицательными показателями
При умножении отрицательных степеней с одинаковыми основаниями показатели степеней складываются:
При делении отрицательных степеней с одинаковыми основаниями из показателя степени делимого вычитается показатель делителя:
Чтобы возвести произведение в отрицательную степень, надо возвести в эту степень каждый сомножитель отдельно:
Чтобы возвести дробь в отрицательную степень, надо возвести в эту степень отдельно числитель и знаменатель:
При возведении одной степени (положительной или отрицательной) в степень (положительную или отрицательную) показатели степеней перемножаются:
Степень числа с отрицательным значением (a — n ) можно определить на подобии того, как определяется степень того же числа с положительным показателем (a n ) . Однако, оно также требует дополнительного определения. Определяется такая формула как:
a — n = ( 1 / a n )
Свойства отрицательных значений степеней чисел аналогичны степеням с положительным показателем. Представленное уравнение a m / a n = a m-n может быть справедливым как
при n больше m , так и при m больше n . Рассмотрим на примере: 7 2 -7 5 =7 2-5 =7 -3 .
Для начала необходимо определить то число, которое выступает определением степени. b=a(-n) . В этом примере -n является показателем степени, b – искомое числовое значение, a – основание степени в виде натурального числового значения. Затем определить модуль, то есть абсолютное значение отрицательного числа, которое выступает в роли показателя степени. Вычислить степень данного числа относительного абсолютного числа, как показателя. Значение степени находится делением единицы на полученное число.
Рис. 1
Рассмотри степень числа с отрицательным дробным показателем. Представим, что число а это любое положительное число, числа n и m – натуральные числа. Согласно определению a , которое возведено в степень — равняется единице, разделенной на это же число с положительной степенью (рис 1). Когда степенью числа является дробь, то в таких случаях используются исключительно числа с положительными показателями.
Распространению такого понятия как число стали такие манипуляции, как расчеты измерения, а также развитие математики, как науки. Ввод отрицательных значений было обусловлено развитием алгебры, которая давала общие решения арифметических задач, независимо от их конкретного смысла и исходных числовых данных. В индии еще в VI-XI веках отрицательные значения чисел систематически употребляли во время решения задач и растолковывались таким же образом, что и сегодня. В европейской науке отрицательные числа начали обширно употребляться благодаря Р. Декарту, который дал геометрическое толкование отрицательным числам, как направлениям отрезков. Именно Декарт предложил обозначение числа возведенного в степень отображать как двухэтажную формулу a n .
Степень с отрицательным показателем определение
Пусть число a есть любое действительное число, отличное от нуля. Число m – отрицательное целое число.
Степень с отрицательным показателем определение:
Отрицательная степень формула
Для вычислений отрицательных степеней используем формулу:
Эта формула применяется, если имеется отрицательное значение степени.
Положительная и отрицательная степень
Чтоб лучше понять сравним положительные и отрицательные степени.
Пусть число a есть любое действительное число, отличное от нуля. Число m – любое целое число.
Тогда a в положительной степени m равно:
Теперь a в отрицательной степени -m:
Степень с целым отрицательным показателем
Обратите внимание, что в этой статье речь идет именно о целом отрицательном показателе. Здесь существенным является то, что показатель целый.
Пример степени с целым отрицательным показателем:
Отрицательное основание степени
Отрицательная степень числа и отрицательное основание степени – это разные вещи.
Отрицательное основание степени рассмотрим на примере.
Пример отрицательного основания степени:
А теперь пример отрицательной степени числа.