Схемы китайских лабораторных блоков питания

Схемы китайских лабораторных блоков питания

Однажды, году в 2009, приобрел себе блок питания. Китайский. Стоил он 580 рублей. Блок был рассчитан на 15 вольт и ток от 0.6 до 2 ампер. Параметры меня не устроили сразу, дабы покупал под переделку, ради корпуса и индикации. Параметры блока были таковы, что регулировка тока в нем заключалась не в стабилизации оного (например берем выход и коротим его, а ручкой тока выставляем ток КЗ.), а триггерной защиты: то есть выставим например защиту на 1А и если потребитель жрал более 1Ампера, то блок уходил в защиту и обрубал выход. Это не серьезно, т.к. мне нужна была именно плавно регулируемая стабилизация тока без ухода в защиту.
Что решил сделать:
Конечно же поменять начинку. Куда ж без этого.
Задача была из обыденного, повседневного хлама сделать бюджетный регулируемый источник от 0 до 24 вольт. В реале получилось от 0.7 до 24 вольт (далее расскажу почему.) и стабилизация тока от 0 до 10 Ампер.
За основу "проекта" был взят обычный компьютерный ATX блок питания. Их у меня было где-то с десяток.
Но были среди них дикий китай, где вместо различных элементов были тупо впаяны перемычки (дроссели, фильтры) экономия типа, да и по силовой части там был полный ализ-гидрализ… К таким даже руки прикладывать не было желания. Были и нормальные.
Для начала нужно было выбрать самый качественный из них. На подопытного пошел брендовый 250 ваттный старенький ATX блок, с добротными силовыми ключами 2SC2325 (toshiba). Ну и естессно со всеми элементами в наличии.
Все компьютерные блоки такого "класса" собраны практически всегда по одной схемотехнике: Импульсный источник питания с обратной связью с 2 плечами ключей системы "Push-pull" тяни-толкай, с гальванической развязкой по управлению согласующим трансформатором. Контроллер ШИМ в них всегда классическая TL494 (или KA7500, полный аналог), имеющая на борту 2 усилителя ошибки, для отслеживания и стабилизации от просадок выходного напряжения. Типа следит что на выходе, и если напряжение проседает под нагрузкой- она поддает гари на эти самые ключи и напряжение выравнивается (гарь в данном случае ширина (длительность) имульса на первичке импульсного трансформатора. Шире импульс- больше выходное напряжение. Короче импульс- напряжение на выходе ниже.Это и есть принцип ШИМ).
Так же ШИМ используется в кач-ве "плавной" подсветки в салоне авто. Вообще это гениальная штука. За ШИМом будущее))
В чем плюс импульсных источников питания (ИИП): конечно высокий КПД. Легко регулировать выходное напряжение, достаточно менять ширину импульса на трансформаторе. Они доступны и малогабаритны. Ключевые транзисторы работают в ключевом режиме: полного открытия (низкое сопротивление перехода "вкл"), либо полного закрытия (высокое сопротивление перехода "выкл"). По сравнению с линейными стабилизаторами (или усилители класса А, АВ и пр): например, где транзистор в полуоткрытом состоянии, он имеет сопротивление, на котором идет рассеивание мощности и происходит нагрев, в ШИМе же как таковой эффект отсутствует (кстати усилитель D-класса (а-ля digital) как раз на ШИМе и построен, от того высокая мощность, и низкое тепловыделение = высокий КПД).
Минусы этих ИИП- много помех, т.к. рабочая частота преобразования

60кГц, то мы имеем на выходе ВЧ наводки, с которыми довольно сложно бороться, но можно, при помощи индуктивностей и керамических кондеров. (Поэтому звукотехника высших классов имеет на борту классический тяжелый и громоздкий трансформаторный БП.) В большинстве вариантов- если КЗ на выходе и ток у нас не отслеживается- БП идет в разнос и выгорают оба силовых ключа. В выбранном БП как раз это без защиты и я попалил несколько пар ключевых транзисторов пока находил пути регулировки тока и напряжения. И вот, в один прекрасный момент настал тот час, когда все стало стабильно и ничего не сгорало.
Сильно в подробности углубляться не буду, там много писанины, и будет лучше, по мере вопросов отвечать на них.
Из основного опишу: выбрасывание из схемы дросселя групповой стабилизации. Напряжение будем снимать по линии бывших +12 вольт. Это значит что все остальные линии напряжений мы просто отключим, выпаяв из них диоды выпрямителей (3.3в, +5, -5, -12 и пр) они не нужны и будут плавать вместе с основным напряжением. Меняем кондеры по выходу на более высоковольтные. Например электролит 50v 1500мкФ, что б штатный не жахнул (он 16 вольт всего).

Далее смотрим даташит ШИМ контроллера TL494 (KA7500) (далее "494я"). Из него видно, что как ранее говорилось- микра имеет 2 усилителя ошибки, которыми она смотрит выходное напряжение БП и если что не так- добавляет гари на ключи или наоборот, сбавляет ее. Это называется обратная связь (залог стабильности напряжений).
В штате использован только один усилитель. Второй посажен на землю. Запломбирован тоесть) Т.к. за током БП в компе не смотрит.
Вот как раз второй усь и будем использовать для отслежки тока в цепи. А первый так и останется следить за напряжением. Для этого собираем простейший резисторный делитель, на который вешаем переменник. Им как раз и будем регулировать входное напряжение на усилитель 494й (грубо говоря говорить микросхеме что делать.)
Например нужно нам на выходе БП 5 вольт. Крутим резистор в большее сопротивление. Напряжение на усилителе повышается. Микросхема запалила повышение напряжения на усилителе. Взяла и уменьшила длительность импульса на ключах. тут то напряжение и снижается на выходе самого БП. . Так же и наоборот.
С током так же. Ток меряется по принципу падения напряжения на низкоомном (0.05ом) токоизмерительном шунте (резисторе) через который у нас подключена "-" клемма на передней панели . Больше ток через резистор- больше напряжение на нем. Это напряжение и отслеживает 494я своим вторым "распломбированным" усилителем и отсекает (обрубает) ШИМ при превышении заданного порога. Регулируем его так же как и напряжение на выходе.
Почему не от 0, а от 0.7 вольт:
Так как мы играемся ШИРИНОЙ (длительностью) импульса- мы не можем полностью эти импульсы убрать. Если убирать- то это срыв генерации, и БП начинает вести себя неадекватно: писки, шелчки и пр прелести. Это происходит потому что 494я пытается запустить генерацию, но слишком высокое напряжение на входе усилителя не позволяет ей этого сделать, и она снова срывает генерацию и так циклично. Поэтому резисторным делителем напряжения на входе 494й добиваемся самой короткой длительности импульсов, при которых еще сохраняется стабильная работа 494й. Эта минимальная длительность и есть наши минимальные 0.7 вольта.
Ну теперь фото чо как)
Вот родные внутренности этой поделки дядюшки Ляо. Вытряхаем это.

Читайте также:  Планшет ирбис 8 дюймов

Будем ставить это. Уже переделанное и готовое к употреблению. только чуть допилить регулировкой.

PS-1502DD — стабилизированный одноканальный источник питания с триггерной защитой от перегрузки.

[Параметры]

— выходное напряжение 0..15 вольт, выставляется в ряд фиксированных значений, либо с помощью плавной регулировки (текущее напряжение индицируется 3-разрядным цифровым индикатором).
— выходной ток до 2 ампер, регулируемый ток срабатывания триггерной защиты 0.6..2 А (текущий ток нагрузки индицируется 3-разрядным цифровым индикатором).
— стабильность напряжения 0.01%.
— напряжение пульсаций при токе 2 А не более 0.5 мВ.
— размеры 120x145x195 мм.
— вес 1.2 кг.

Принципиальная схема, которую удалось найти в Интернете. Внимание! Позиционные обозначения элементов на схеме могут не соответствовать тем, что будут в Вашем блоке питания (именно так случилось у меня). Могут быть также и другие ошибки (например, у меня вызывает сомнения правильность схемы узла защиты по току). Силовое переменное напряжение питания схемы — 21 вольт (подается на вход силового выпрямителя).

Другой вариант схемы:

Что понравилось в источнике питания:
1. Неплохие технические параметры (подозрительно маленькое напряжение пульсаций).
2. Симпатичный корпус. Внутри много свободного места, что позволяет его легко переделывать и улучшать.
3. Наличие цифровых индикаторов тока и напряжения.
4. Грубая и плавная регулировка напряжения, регулировка срабатывания тока защиты.
5. Имеется шнурок с хвостами для зарядки мобильных телефонов. Мне это не нужно, просто сей факт меня удивил.
6. Цена — 549 рублей в розницу. Приятель говорил, что видел месяц назад этот блок питания за 470 (!) рублей.

Недостатки, хотя при такой цене смешно о них говорить (причем большинство недостатков устранимы с минимальными усилиями):
1. Короткий и хлипкий шнур питания (легко фиксится).
2. Корпус сделан из тонкого железа, слишком много винтов-саморезов, крепящих крышку (неудобно блок разбирать), слабое качество резьбы — резьба фактически отсутствует, что после нескольких разборок может привести к выпаданию саморезов (фиксится при надобности путем напайки гаек с резьбой M3).
3. Резистор датчика защиты на максимальном токе сильно греется — так сильно, что может отпаяться, с обугливанием платы (фиксится).
4. Защита по току триггерная, чтобы её сбросить, надо выключить питание (фиксится).
5. Индикация рабочего режима и срабатывания защиты сделана "наоборот" — когда блок находится в рабочем режиме, то цвет свечения светодиода красный, а когда сработала защита — меняется на зеленый (фиксится путем доработки схемы).
6. Силовому транзистору не помешал бы радиатор (легко фиксится).
7. Конденсатор на выходе выпрямителя слишком маленький — там стоит 2200 мкФ 35 вольт (фиксится). Диодный мост тоже слабоват, без запаса по току (фиксится).
8. Ручки на переменных резисторах и особенно на переключателе сидят очень туго, и их тяжело снимать (я их даже слегка повредил и помял пластмассу передней панели). Это придется делать, если будете реализовывать апгрейд блока питания или если придется его ремонтировать.
9. Хлипкие выходные клеммы — резьба на гаечках зажимов проводов сделана из пластмассы, и долго она не продержится.

Список реализованных переделок:

1. Замена сопливого сетевого шнурка (60 см) на нормальный 1.2-метровый.
2. Замена резистора датчика тока защиты (1 Ом 5 Вт) на более мощный.
3. Переделка триггерной защиты по току — заменил на регулируемое ограничение тока.
4. Установка силового транзистора на радиатор.

Список запланированных на будущее переделок:

5. Увеличение емкости конденсатора фильтра после диодного моста (сейчас стоит 2200 мкФ 35 вольт), увеличение предельного тока диодного моста (там сейчас стоит мост на 2 А).
6. Замена силового трансформатора на более мощный.
7. Переделка токовой защиты на более чувствительную (позволит уменьшить сопротивление датчика тока и увеличить пределы регулировки тока ограничения).
8. Применить качественную индикацию срабатывания защиты (сейчас она практически не работает).

[Подробнее о переделках]

Родной сетевой шнур был неприлично коротким (когда блок стоит на столе, то вилка не доставала даже до пола). Заменил на стандартный, с заземлением. Для этого пришлось немного расточить полиэтиленовый фиксатор шнура.

Резистор датчика тока защиты (1 Ом) заменил на самодельный из нихрома диаметром 0.8 мм, несколько меньшего номинала (0.6 Ом). Исчезла проблема с перегревом резистора и платы на больших токах нагрузки.

Самая неприятная вещь в источнике питания PS-1502DD — триггерная защита по току. Она очень неудобная, для её сброса нужно полностью выключать питание и ждать пару секунд. С такой защитой ручка регулировки тока почти теряет смысл. Триггерный эффект отключается просто — достаточно выпаять транзистор V1 и замкнуть резистор R3 (здесь и далее позиционные обозначения соответствуют приведенной выше принципиальной схеме). После этого схема заработала в режиме регулировки ограничения тока в пределах 0.7..2.2 А (максимум ограничивается нагрузочной способностью трансформатора).

Читайте также:  Интернет клиент банк пао росбанк

Установка силового транзистора на радиатор никакой проблемы не составила. Купил на рынке первый понравившийся радиатор, просверлил в задней стенке и подправил дремелем несколько дырок, и прикрутил.

Схему защиты есть смысл полностью переделать на более эффективную. Схема не многим сложнее, зато пределы регулировки тока увеличиваются на порядок (можно легко регулировать ток ограничения в пределах 0.05..2 А). Статья, описывающая принцип защиты, была опубликована в журнале "Радио" №6, 1987 г., автор А. Чурбаков. Я пробовал ранее делать такую схему, она отлично работает. Отличие новой схемы от старой в том, что падение напряжения на датчике тока не открывает подключенный к датчику транзистор, а наоборот — закрывает.

[Блок индикации]

Единственное, что точно не требует переделки (разве что ремонта) — это блок индикации YIZHAN-3000BTB. Он, конечно, тоже не лишен недостатков (см. схему). Например, опорное напряжение генерируется из напряжения питания +5 вольт, которое дает обычный стабилизатор L7805CV. Внимание! Обмотка трансформатора 9 вольт (которая питает схему индикации) должна быть развязана от всех остальных обмоток, иначе попалите входные цепи микросхем GC7137AD (это китайский урезанный аналог микросхемы MAXIM ICL7137).

Индикаторы применены с общим анодом HS310561K-2A (китайский аналог LD4031B).

Если у Вас нет микросхем GC7137AD (ICL7137) и нечем их заменить, можете воспользоваться контроллером на макетной плате AVR-USB-MEGA16 [3].

UPD130322

Для переделки оригинальной схемы PS-1502DD хорошо подойдет схема лабораторного источника 0..25V, с регулировкой тока защиты 0..5A. Защита по току сделана по принципу ограничения тока. Далее приведен перевод материала из оригинальной статьи автора [4].

Вот схема силовой части одного канала:

Для этой схемы нужен один трансформатор на 24V переменного тока 5A, и еще один на 6.3V переменного тока 0.1A. Два трансформатора нужны, чтобы получить 2 постоянных напряжения с уровнем 30V и 40V. Можно использовать две обмотки на одном трансформаторе. Напряжение 30V нужно как мощный источник постоянного тока для выхода, и 40V нужно для питания управляющей схемы. Можно конечно использовать один мощный источник нестабилизированного постоянного тока на 40V 5A, но тогда полезная мощность трансформатора будет рассеиваться неэффективно, и для выходных силовых транзисторов потребуется радиатор увеличенного размера.

Операционный усилитель LT7013 выполняет две функции — часть A является регулятором напряжения, а часть B управляет током. Оба выхода операционных усилителей A и B соединены друг с другом через диоды, так что результирующее напряжение на выходе определяется самым низким напряжением на выходе операционных усилителей. Так что если Вы установите выходное напряжение 10V, и выходной ток 1A, и затем замкнете выход, то операционный усилитель B своим выходом ограничит выходное напряжение, и выходной ток стабилизируется. Для работы датчика тока используется очень хорошая деталь ZXCT1009, которая работает как токовое зеркало. Оно генерирует ток пропорционально току, протекающему через резистор датчика тока, и этот ток передается на резистор R8, который преобразует его в напряжение. На выходе блока питания применено много транзисторов (включенных по схеме составного транзистора), потому что выходы операционных усилителей дают небольшой ток. Имейте в виду, что резистор R23 очень важен, так как он защищает выходные силовые транзисторы от слишком больших импульсов тока короткого замыкания. Если Вы соберете эту схему, то убедитесь, насколько хорошо она работает.

Как видно на фотографии, этот лабораторный источник питания подключен к LCD для отображения установленного текущего тока и напряжения, а также для отображения реального текущего выходного тока и напряжения. Управление LCD реализовано на микроконтроллере ATmega32 с 4 входами АЦП для получение аналоговых значений тока и напряжения от силовой части (можно также использовать макетную плату AVR-USB-MEGA16, на которой установлен микроконтроллер ATmega32A).

Однажды, году в 2009, приобрел себе блок питания. Китайский. Стоил он 580 рублей. Блок был рассчитан на 15 вольт и ток от 0.6 до 2 ампер. Параметры меня не устроили сразу, дабы покупал под переделку, ради корпуса и индикации. Параметры блока были таковы, что регулировка тока в нем заключалась не в стабилизации оного (например берем выход и коротим его, а ручкой тока выставляем ток КЗ.), а триггерной защиты: то есть выставим например защиту на 1А и если потребитель жрал более 1Ампера, то блок уходил в защиту и обрубал выход. Это не серьезно, т.к. мне нужна была именно плавно регулируемая стабилизация тока без ухода в защиту.
Что решил сделать:
Конечно же поменять начинку. Куда ж без этого.
Задача была из обыденного, повседневного хлама сделать бюджетный регулируемый источник от 0 до 24 вольт. В реале получилось от 0.7 до 24 вольт (далее расскажу почему.) и стабилизация тока от 0 до 10 Ампер.
За основу "проекта" был взят обычный компьютерный ATX блок питания. Их у меня было где-то с десяток.
Но были среди них дикий китай, где вместо различных элементов были тупо впаяны перемычки (дроссели, фильтры) экономия типа, да и по силовой части там был полный ализ-гидрализ… К таким даже руки прикладывать не было желания. Были и нормальные.
Для начала нужно было выбрать самый качественный из них. На подопытного пошел брендовый 250 ваттный старенький ATX блок, с добротными силовыми ключами 2SC2325 (toshiba). Ну и естессно со всеми элементами в наличии.
Все компьютерные блоки такого "класса" собраны практически всегда по одной схемотехнике: Импульсный источник питания с обратной связью с 2 плечами ключей системы "Push-pull" тяни-толкай, с гальванической развязкой по управлению согласующим трансформатором. Контроллер ШИМ в них всегда классическая TL494 (или KA7500, полный аналог), имеющая на борту 2 усилителя ошибки, для отслеживания и стабилизации от просадок выходного напряжения. Типа следит что на выходе, и если напряжение проседает под нагрузкой- она поддает гари на эти самые ключи и напряжение выравнивается (гарь в данном случае ширина (длительность) имульса на первичке импульсного трансформатора. Шире импульс- больше выходное напряжение. Короче импульс- напряжение на выходе ниже.Это и есть принцип ШИМ).
Так же ШИМ используется в кач-ве "плавной" подсветки в салоне авто. Вообще это гениальная штука. За ШИМом будущее))
В чем плюс импульсных источников питания (ИИП): конечно высокий КПД. Легко регулировать выходное напряжение, достаточно менять ширину импульса на трансформаторе. Они доступны и малогабаритны. Ключевые транзисторы работают в ключевом режиме: полного открытия (низкое сопротивление перехода "вкл"), либо полного закрытия (высокое сопротивление перехода "выкл"). По сравнению с линейными стабилизаторами (или усилители класса А, АВ и пр): например, где транзистор в полуоткрытом состоянии, он имеет сопротивление, на котором идет рассеивание мощности и происходит нагрев, в ШИМе же как таковой эффект отсутствует (кстати усилитель D-класса (а-ля digital) как раз на ШИМе и построен, от того высокая мощность, и низкое тепловыделение = высокий КПД).
Минусы этих ИИП- много помех, т.к. рабочая частота преобразования

Читайте также:  Как войти в оригин

60кГц, то мы имеем на выходе ВЧ наводки, с которыми довольно сложно бороться, но можно, при помощи индуктивностей и керамических кондеров. (Поэтому звукотехника высших классов имеет на борту классический тяжелый и громоздкий трансформаторный БП.) В большинстве вариантов- если КЗ на выходе и ток у нас не отслеживается- БП идет в разнос и выгорают оба силовых ключа. В выбранном БП как раз это без защиты и я попалил несколько пар ключевых транзисторов пока находил пути регулировки тока и напряжения. И вот, в один прекрасный момент настал тот час, когда все стало стабильно и ничего не сгорало.
Сильно в подробности углубляться не буду, там много писанины, и будет лучше, по мере вопросов отвечать на них.
Из основного опишу: выбрасывание из схемы дросселя групповой стабилизации. Напряжение будем снимать по линии бывших +12 вольт. Это значит что все остальные линии напряжений мы просто отключим, выпаяв из них диоды выпрямителей (3.3в, +5, -5, -12 и пр) они не нужны и будут плавать вместе с основным напряжением. Меняем кондеры по выходу на более высоковольтные. Например электролит 50v 1500мкФ, что б штатный не жахнул (он 16 вольт всего).

Далее смотрим даташит ШИМ контроллера TL494 (KA7500) (далее "494я"). Из него видно, что как ранее говорилось- микра имеет 2 усилителя ошибки, которыми она смотрит выходное напряжение БП и если что не так- добавляет гари на ключи или наоборот, сбавляет ее. Это называется обратная связь (залог стабильности напряжений).
В штате использован только один усилитель. Второй посажен на землю. Запломбирован тоесть) Т.к. за током БП в компе не смотрит.
Вот как раз второй усь и будем использовать для отслежки тока в цепи. А первый так и останется следить за напряжением. Для этого собираем простейший резисторный делитель, на который вешаем переменник. Им как раз и будем регулировать входное напряжение на усилитель 494й (грубо говоря говорить микросхеме что делать.)
Например нужно нам на выходе БП 5 вольт. Крутим резистор в большее сопротивление. Напряжение на усилителе повышается. Микросхема запалила повышение напряжения на усилителе. Взяла и уменьшила длительность импульса на ключах. тут то напряжение и снижается на выходе самого БП. . Так же и наоборот.
С током так же. Ток меряется по принципу падения напряжения на низкоомном (0.05ом) токоизмерительном шунте (резисторе) через который у нас подключена "-" клемма на передней панели . Больше ток через резистор- больше напряжение на нем. Это напряжение и отслеживает 494я своим вторым "распломбированным" усилителем и отсекает (обрубает) ШИМ при превышении заданного порога. Регулируем его так же как и напряжение на выходе.
Почему не от 0, а от 0.7 вольт:
Так как мы играемся ШИРИНОЙ (длительностью) импульса- мы не можем полностью эти импульсы убрать. Если убирать- то это срыв генерации, и БП начинает вести себя неадекватно: писки, шелчки и пр прелести. Это происходит потому что 494я пытается запустить генерацию, но слишком высокое напряжение на входе усилителя не позволяет ей этого сделать, и она снова срывает генерацию и так циклично. Поэтому резисторным делителем напряжения на входе 494й добиваемся самой короткой длительности импульсов, при которых еще сохраняется стабильная работа 494й. Эта минимальная длительность и есть наши минимальные 0.7 вольта.
Ну теперь фото чо как)
Вот родные внутренности этой поделки дядюшки Ляо. Вытряхаем это.

Будем ставить это. Уже переделанное и готовое к употреблению. только чуть допилить регулировкой.

Ссылка на основную публикацию
Статическая и динамическая озу
Оперативная память (Random Access Memory – RAM), т.е. память с произвольным доступом, используется центральным процессором для совместного хранения данных и...
Создать новую электронную почту на яндексе бесплатно
Всем привет! С вами снова я, Алексей. В этом посте я расскажу вам о том, как создать электронную почту на...
Создать канал на ютубе регистрация бесплатно
Добрый день, уважаемые читатели и гости моего блога! Если вы попали на эту статью, значит хотите узнать, как зарегистрироваться в...
Статусы сообщений в whatsapp
Cтатусы показывают, используют ли ваши контакты WhatsApp в настоящий момент или то время, когда они были онлайн в последний раз....
Adblock detector