Шифрование в беспроводных сетях

Шифрование в беспроводных сетях

вторник, 12 января 2010 г.

WEP шифрование в Wi-Fi сетях

Введение

Wired Equivalent Privacy (WEP) — устаревший алгоритм для обеспечения безопасности беспроводной IEEE 802.11 сети.

Беспроводные сети с использованием радио в большей степени подвержены прослушиванию, чем проводные.

В 1999 году WEP предназначался для обеспечения конфиденциальности, сопоставимой с проводной сетью. Также WEP — необязательная характеристика стандарта IEEE 802.11, которая используется для обеспечения безопасности передачи данных. Она идентична протоколу безопасности в кабельных локальных сетях без применения дополнительных методов шифрования.

Технология WEP

Согласно стандарту 802.11, шифрование данных WEP используется в следующих целях:

1. Предотвращение несанкционированного доступа к данным при использовании беспроводных сетевых устройств.

2. Предотвращение перехвата трафика беспроводных локальных сетей.

WEP позволяет администратору беспроводной сети определять для каждого пользователя набор ключей, основанный на "строке ключей", которая обрабатывается алгоритмом WEP. Любой пользователь, не имеющий требуемого ключа, не может получить доступ в сеть.

Как указывается в спецификации, WEP использует алгоритм шифрования RC4 с 40-битным или 128-битным ключом. При включении WEP все станции (как клиентские, так и точки доступа) получают свой ключ, который применяется для шифрования данных, прежде чем последние будут переданы на передатчик. Если станция получает пакет, не зашифрованный соответствующим ключом, он исключается из трафика. Этот метод служит для защиты от несанкционированного доступа и перехвата данных.

Начиная с 2001 года ряд серьёзных недостатков, выявленных криптоаналитиками, показали, что сегодня WEP—связи можно взломать за несколько минут. Через несколько месяцев в IEEE была создана новая 802.11i целевая группа по борьбе с проблемами. В 2003 году Wi-Fi Альянс объявил о том, что WEP был заменён на WPA, который представлял собой 802.11i поправку. В 2004 году с момента полного принятия стандарта 802.11i(или WPA2) IEEE заявило что WEP-40 и WEP-104 не рекомендуются, поскольку не выполняют своих обязанностей в области обеспечения безопасности. Несмотря на свои недостатки WEP и сегодня широко используется.

Специалисты, изучающие проблему защиты информации, опубликовали подробный отчет о слабостях в методах кодирования, широко применяемых для засекречивания информации при передаче по беспроводным сетям.

Корень проблемы – имеющиеся лазейки в обеспечении секретности, возникающие от недостатков в алгоритме присвоения кода, используемом в Wired Equivalent Privacy (WEP) — протоколе, являющимся частью сетевого радио-стандарта 802.11.

Уязвимости защиты при радиопередаче данных были широко описаны и прежде, но основное отличие недавно обнаруженного недостатка заключается в том, что его гораздо проще эксплуатировать. По сообщению EE-Times, пассивный перехват зашифрованного текста с дальнейшей обработкой его по методу, предложенному исследователями, позволил бы злоумышленнику с радио LAN-подключением подбирать защитные коды менее чем за 15 минут. Увеличение длины ключа, применяемого при кодировании, не дало бы пользы при отражении нападений, основанных на использовании фундаментальной ошибки, заключающейся в самой методологии используемой техники кодирования.

Механизм шифрования WEP

Шифрование WEP (Wired Equivalent Privacy — секретность на уровне проводной связи) основано на алгоритме RC4 (Rivest’s Cipher v.4 — код Ривеста), который представляет собой симметричное потоковое шифрование. Как было отмечено ранее, для нормального обмена пользовательскими данными ключи шифрования у абонента и точки радиодоступа должны быть идентичными.

Ядро алгоритма состоит из функции генерации ключевого потока. Эта функция генерирует последовательность битов, которая затем объединяется с открытым текстом посредством суммирования по модулю два. Дешифрация состоит из регенерации этого ключевого потока и суммирования его с шифрограммой по модулю два для восстановления исходного текста. Другая главная часть алгоритма — функция инициализации, которая использует ключ переменной длины для создания начального состояния генератора ключевого потока.

RC4 — фактически класс алгоритмов, определяемых размером его блока. Этот параметр n является размером слова для алгоритма. Обычно, n = 8, но в целях анализа можно уменьшить его. Однако для повышения уровня безопасности необходимо задать большее значение этой величины. Внутреннее состояние RC4 состоит из массива размером 2n слов и двух счетчиков, каждый размером в одно слово. Массив известен как S-бокс, и далее он будет обозначаться как S. Он всегда содержит перестановку 2n возможных значений слова. Два счетчика обозначены через i и j.

Алгоритм инициализации RC4

Этот алгоритм использует ключ, сохраненный в Key и имеющий длину l байт. Инициализация начинается с заполнения массива S, далее этот массив перемешивается путем перестановок, определяемых ключом. Так как над S выполняется только одно действие, должно выполняться утверждение, что S всегда содержит все значения кодового слова.

Начальное заполнение массива:

for i = 0 to 2n – 1

for i = 0 to 2n – 1

j = j + S[i] + Key[i mod l]

Перестановка (S[i], S[j])

Генератор ключевого потока RC4 переставляет значения, хранящиеся в S, и каждый раз выбирает новое значение из S в качестве результата. В одном цикле RC4 определяется одно n-битное слово K из ключевого потока, которое в дальнейшем суммируется с исходным текстом для получения зашифрованного текста.

Перестановка (S[i], S[j])

Результат: K = S[S[i] + S[j]].

Особенности WEP-протокола

Достаточно устойчив к атакам, связанным с простым перебором ключей шифрования, что обеспечивается необходимой длиной ключа и частотой смены ключей и инициализирующего вектора;

Самосинхронизация для каждого сообщения. Это свойство является ключевым для протоколов уровня доступа к среде передачи, где велико число искаженных и потерянных пакетов;

Эффективность: WEP легко реализовать;

Использование WEP-шифрования не является обязательным в сетях стандарта IEEE 802.11.

Для непрерывного шифрования потока данных используется потоковое и блочное шифрование.

Потоковое шифрование

При потоковом шифровании выполняется побитовое сложение по модулю 2 (функция “исключающее ИЛИ”, XOR) ключевой последовательности, генерируемой алгоритмом шифрования на основе заранее заданного ключа, и исходного сообщения. Ключевая последовательность имеет длину, соответствующую длине исходного сообщения, подлежащего шифрованию.

Блочное шифрование

Блочное шифрование работает с блоками заранее определенной длины, не меняющейся в процессе шифрования. Исходное сообщение фрагментируется на блоки, и функция XOR вычисляется над ключевой последовательностью и каждым блоком. Размер блока фиксирован, а последний фрагмент исходного сообщения дополняется пустыми символами до длины нормального блока. Например, при блочном шифровании с 16-байтовыми блоками исходное сообщение длиной в 38 байтов фрагментируется на два блока длиной по 16 байтов и 1 блок длиной 6 байтов, который затем дополняется 10 байтами пустых символов до длины нормального блока.

Потоковое шифрование и блочное шифрование используют метод электронной кодовой книги (ECB). Метод ECB характеризуется тем, что одно и то же исходное сообщение на входе всегда порождает одно и то же зашифрованное сообщение на выходе. Это потенциальная брешь в системе безопасности, ибо сторонний наблюдатель, обнаружив повторяющиеся последовательности в зашифрованном сообщении, в состоянии сделать обоснованные предположения относительно идентичности содержания исходного сообщения.

Для устранения указанной проблемы используют:

· Векторы инициализации (Initialization Vectors — IVs).

· Обратную связь (feedback modes).

До начала процесса шифрования 40- или 104-битный секретный ключ распределяется между всеми станциями, входящими в беспроводную сеть. К секретному ключу добавляется вектор инициализации (IV).

Вектор инициализации

Вектор инициализации (Initialization Vector — IV) используется для модификации ключевой последовательности. При использовании вектора инициализации ключевая последовательность генерируется алгоритмом шифрования, на вход которого подается секретный ключ, совмещенный с IV. При изменении вектора инициализации ключевая последовательность также меняется. На рис. 8.3 исходное сообщение шифруется с использованием новой ключевой последовательности, сгенерированной алгоритмом шифрования после подачи на его вход комбинации из секретного ключа и вектора инициализации, что порождает на выходе шифрованное сообщение.

Читайте также:  Двоичное кодирование чисел в компьютере

Стандарт IEEE 802.11 рекомендует использовать новое значение вектора инициализации для каждого нового фрейма, передаваемого в радиоканал.

Таким образом, один и тот же нешифрованный фрейм, передаваемый многократно, каждый раз будет порождать уникальный шифрованный фрейм.

Вектор инициализации имеет длину 24 бита и совмещается с 40- или 104-битовым базовым ключом шифрования WEP таким образом, что на вход алгоритма шифрования подается 64- или 128-битовый ключ. Вектор инициализации присутствует в нешифрованном виде в заголовке фрейма в радиоканале, с тем чтобы принимающая сторона могла успешно декодировать этот фрейм. Несмотря на то, что обычно говорят об использовании шифрования WEP с ключами длиной 64 или 128 битов, эффективная длина ключа составляет лишь 40 или 104 бита по причине передачи вектора инициализации в нешифрованном виде. При настройках шифрования в оборудовании при 40-битном эффективном ключе вводятся 5 байтовых ASCII-символов (5×8=40) или 10 шестнадцатеричных чисел (10×4=40), и при 104-битном эффективном ключе вводятся 13 байтовых ASCII-символов (3×8=104) или 26 шестнадцатеричных чисел (26×4=104). Некоторое оборудование может работать со 128-битным ключом.

Слабые места WEP шифрования и примеры атак

Все атаки на WEP основаны на недостатках шифра RC4, таких, как возможность коллизий векторов инициализации и изменения кадров. Для всех типов атак требуется проводить перехват и анализ кадров беспроводной сети. В зависимости от типа атаки, количество кадров, требуемое для взлома, различно. С помощью программ, таких как Aircrack-ng, взлом беспроводной сети с WEP шифрованием осуществляется очень быстро и не требует специальных навыков.

Атака Фларера-Мантина-Шамира

Была предложена в 2001 году Скоттом Фларером, Ициком Мантином и Ади Шамиром. Требует наличия в кадрах слабых векторов инициализации. В среднем для взлома необходимо перехватить около полумиллиона кадров. При анализе используются только слабые векторы. При их отсутствии (например, после коррекции алгоритма шифрования) данная атака неэффективна.

Атака KoreK

В 2004 году была предложена хакером, называющим себя KoreK. Ее особенность в том, что для атаки не требуются слабые вектора инициализации. Для взлома необходимо перехватить несколько сотен тысяч кадров. При анализе используются только векторы инициализации.

Атака Тевса-Вайнмана-Пышкина

Была предложена в 2007 году Эриком Тевсом (Erik Tews), Ральфом-Филипом Вайнманом (Ralf-Philipp Weinmann) и Андреем Пышкиным. Использует возможность инъекции ARP запросов в беспроводную сеть. На данный момент это наиболее эффективная атака, для взлома требуется всего несколько десятков тысяч кадров. При анализе используются кадры целиком.В заключении можно напомнить, что в алгоритме есть множество слабых мест:

  • механизмы обмена ключами и проверки целостности данных
  • малая разрядность ключа и вектора инициализации (англ. Initialization vector)
  • способ аутентификации
  • алгоритм шифрования.

В 2001 году появилась спецификация WEP-104, которая, тем не менее, не решила проблемы, так как длина вектора инициализации и способ проверки целостности данных остались прежними. В 2004 году IEEE одобрил новые механизмы WPA и WPA2. С тех пор WEP считается устаревшим. В 2008 году вышел стандарт DSS (англ. Data Security Standard) комитета SSC (англ. Security Standards Council) организации PCI (англ. Payment Card Industry) в котором рекомендуется прекратить использовать WEP для шифрования после 30 июня 2010 года.

Технологии безопасности беспроводных сетей

Говоря о сетевой безопасности как части информационной безопасности объекта, нельзя обойти стороной тему о методах защиты беспроводных сегментов компьютерной сети.

Как уже упоминалось ранее, существует множество технологий, призванных повысить сетевую безопасность , и все они предлагают решения для важнейших компонентов политики в области защиты данных: аутентификации , поддержания целостности данных и активной проверки . Под аутентификацией подразумевается аутентификация пользователя или конечного устройства ( хост клиента, сервер , коммутатор , маршрутизатор , межсетевой экран и т.д.) и его местоположения с последующей авторизацией пользователей и конечных устройств. Целостность данных включает такие области, как безопасность сетевой инфраструктуры, безопасность периметра и конфиденциальность данных. Активная проверка помогает удостовериться в том, что установленная политика в области безопасности выдерживается на практике, и отследить все аномальные случаи и попытки несанкционированного доступа.

Стандарт IEEE 802.11 с традиционной безопасностью (Tradition Security Network , TSN) предусматривает два механизма аутентификации беспроводных клиентов: открытую аутентификацию ( Open Authentication ) и аутентификацию с общим ключом (Shared Key Authentication ). Для аутентификации в беспроводных сетях также широко используются два других механизма, которые не являются частью стандарта 802.11, а именно – назначение идентификатора беспроводной локальной сети ( Service Set Identifier , SSID ) и аутентификация клиента по его MAC-адресу ( MAC Address Authentication ).

Идентификатор беспроводной локальной сети (SSID) представляет собой атрибут беспроводной сети (так называемое имя сети), позволяющий логически отличать сети друг от друга. Когда пользователь пытается войти в сеть , беспроводной адаптер с помощью программы, прежде всего, сканирует пространство на предмет наличия в ней беспроводных сетей. При применении режима скрытого идентификатора сеть не отображается в списке доступных и подключиться к ней можно только в том случае, если, во-первых, точно известен ее SSID , а во-вторых, заранее создан профиль подключения к этой сети.

Аутентификация в стандарте IEEE 802.11 ориентирована на аутентификацию клиентского устройства радиодоступа, а не конкретного клиента как пользователя сетевых ресурсов (несмотря на то, что в литературе распространено выражение " аутентификация клиента"). Процесс аутентификации клиента беспроводной локальной сети IEEE 802.11 проиллюстрирован на рисунке 2.14 и состоит из следующих этапов:

  1. Клиент посылает кадр (фрейм) запроса Probe Request во все радиоканалы.
  2. Каждая точка радиодоступа (Access Point, AP), в зоне радиуса действия которой находится клиент, посылает в ответ фрейм Probe Response.
  3. Клиент выбирает предпочтительную для него точку радиодоступа и посылает в обслуживаемый ею радиоканал запрос на аутентификацию Authentication Request.
  4. Точка радиодоступа посылает подтверждение аутентификации Authentication Reply.
  5. В случае успешной аутентификации клиент посылает точке доступа запрос на соединение (ассоциирование) Association Request.
  6. Точка доступа посылает в ответ фрейм подтверждения ассоциации Association Response.
  7. Клиент может теперь осуществлять обмен пользовательским трафиком с точкой радиодоступа и проводной сетью.

Аутентификация с общим ключом является вторым методом аутентификации стандарта IEEE 802.11. Процесс аутентификации с общим ключом аналогичен процессу открытой аутентификации, отличаясь тем, что данный метод требует настройки статического ключа шифрования WEP , идентичного на клиентском устройстве (беспроводной адаптер ) и на беспроводной точке доступа.

Аутентификация клиента по его MAC-адресу поддерживается многими производителями оборудования для беспроводных сетей, в том числе D-Link. При аутентификации по MAC -адресу происходит сравнение MAC -адреса клиента либо со списком разрешенных (или запрещенных) адресов клиентов, внесенным в МАС-таблицу точки доступа, либо с помощью внешнего сервера аутентификации (рисунок 3.2). Аутентификация по MAC -адресу используется в дополнение к открытой аутентификации и аутентификации с общим ключом стандарта IEEE 802.11 для уменьшения вероятности доступа посторонних пользователей.

Но перечисленные механизмы аутентификации не обеспечат неуязвимость и полную безопасность беспроводной сети.

Читайте также:  Темы для ubuntu gnome

Идентификатор SSID регулярно передается точками радиодоступа в специальных фреймах Beacon. Любая приемо-передающая станция, расположенная в радиусе действия и поддерживающая стандарт 802.11, может определить SSID с помощью анализатора трафика протокола 802.11. Некоторые точки радиодоступа, в том числе D-Link, позволяют административно запретить широковещательную передачу SSID внутри фреймов Beacon. Однако и в этом случае SSID можно легко определить путем захвата фреймов Probe Response , посылаемых точками радиодоступа. SSID не обеспечивает конфиденциальность данных, данный идентификатор не разрабатывался для использования в качестве механизма обеспечения безопасности. Кроме этого, отключение широковещательной передачи SSID точками радиодоступа может серьёзно отразиться на совместимости оборудования беспроводных сетей различных производителей при использовании в одной беспроводной сети.

Открытая аутентификация не позволяет точке доступа определить, разрешен ли клиенту доступ к сети или нет. Это становится уязвимым местом в системе безопасности в том случае, если в беспроводной локальной сети не используется так называемое WEP — шифрование . В случаях, когда использование WEP -шифрования не требуется или невозможно (например, в беспроводных локальных сетях публичного доступа), методы аутентификации более высокого уровня могут быть реализованы посредством Интернет -шлюзов.

Стандарт IEEE 802.11 требует передачи MAC -адресов клиента и точки радиодоступа в открытом виде. В результате этого в беспроводной сети, использующей аутентификацию по MAC -адресу, злоумышленник может обмануть метод аутентификации путём подмены своего MAC -адреса на разрешенный.

Первым стандартом шифрования данных в беспроводных сетях стал протокол WEP (Wired Equivalent Privacy ). Шифрование осуществляется с помощью 40 или 104-битного ключа (поточное шифрование с использованием алгоритма RC4 на статическом ключе) и дополнительной динамической составляющей размером 24 бита, называемой вектором инициализации ( Initialization Vector , IV).

Процедура WEP -шифрования выглядит следующим образом. Первоначально передаваемые в пакете данные проверяются на целостность ( алгоритм CRC-32) для получения значения контроля целостности ( Integrity Check Value, ICV), добавляемого в конец исходного сообщения. Далее генерируется 24-битный вектор инициализации (IV), а к нему добавляется статический (40- или 104-битный) секретный ключ . Полученный таким образом 64- или 128-битный ключ и является исходным ключом для генерации псевдослучайного числа, которое используется для шифрования данных. Далее данные смешиваются (шифруются) с помощью логической операции XOR с псевдослучайной ключевой последовательностью, а вектор инициализации добавляется в служебное поле кадра.

Как и любая другая система безопасности на основе паролей, надежность WEP зависит от длины и состава ключа, а также частоты его смены. Первый серьезный недостаток – применение статического ключа – за относительно небольшое время ключ можно подобрать перебором. И второй недостаток WEP -шифрования – самосинхронизация для каждого сообщения, поскольку вектор инициализации передается незашифрованным текстом с каждым пакетом и через небольшой промежуток времени он повторяется. В результате протокол шифрования WEP на основе алгоритма RC4 в настоящее время не является стойким.

Комплексная система обеспечения безопасности беспроводных сетей

На смену WEP пришёл стандарт IEEE 802.11i, представляющий из себя комплексную систему обеспечения безопасности. Эта система включает в себя системы аутентификации , создания новых ключей для каждой сессии, управления ключами (на базе технологии Remote Access Dial-In User Service , RADIUS ), проверки подлинности пакетов и т.д.

Разработанный стандарт IEEE 802.11i призван расширить возможности протокола IEEE 802.11, предусмотрев средства шифрования передаваемых данных, а также централизованной аутентификации пользователей и рабочих станций.

Основные организации, участвующие в разработке и продвижении стандартов Wi-Fi, в лице ассоциаций Wi-Fi Alliance и IEEE , не дожидаясь ратификации стандарта IEEE 802.11i, в ноябре 2002г. анонсировали спецификацию Wi-Fi Protected Access ( WPA ), соответствие которой обеспечивает совместимость оборудования различных производителей. В последующем WPA стал составной частью стандарта IEEE 802.11i.

Новый стандарт безопасности WPA обеспечил уровень безопасности куда больший, чем может предложить WEP , и имеет то преимущество, что микропрограммное обеспечение более старого оборудования может быть заменено без внесения аппаратных изменений.

А позже был разработан и утвержден стандарт WPA2 , обеспечивающий еще более высокий уровень безопасности, чем первая версия WPA .

WPA/WPA2 (Wi-Fi Protected Access, защищенный доступ Wi-Fi) представляет собой обновленную программу сертификации устройств беспроводной связи. Преимуществами WPA являются усиленная безопасность данных и ужесточенный контроль доступа к беспроводным сетям. Изначально WPA основывался на протоколе TKIP ( Temporal Key Integrity Protocol ), использующий метод шифрования RC4 . Между тем WPA2 задействует новый метод шифрования CCMP ( Counter — Mode with CBC — MAC Protocol ), основанный на более мощном, чем RC4 , алгоритме шифрования AES ( Advanced Encryption Standard ). CCMP является обязательной частью стандарта WPA2 и необязательной частью стандарта WPA . Кроме того, в WPA / WPA2 обеспечена поддержка стандартов IEEE 802.1х, протокола EAP ( Extensible Authentication Protocol – расширяемый протокол аутентификации) и проверка целостности сообщений MIC (Message Integrity Check ).

Wi-Fi Alliance дает следующую формулу для определения сути WPA :

WPA = IEEE 802.1X + TKIP + EAP + MIC

Из этой формулы видно, что WPA , по сути, является суммой нескольких технологий.

Стандарт IEEE 802.1x не требует обязательной смены ключей шифрования одноадресной рассылки. Кроме того, в стандартах IEEE 802.11 и IEEE 802.1x не определены механизмы изменения открытого ключа шифрования, который используется для многоадресного и широковещательного трафика. В WPA требуется смена обоих ключей. В случае использования ключа одноадресной рассылки протокол TKIP ( Temporal Key Integrity Protocol ) изменяет ключ для каждого кадра, а изменение синхронизируется между беспроводным клиентом и точкой беспроводного доступа. Для общего ключа шифрования в WPA включены средства передачи измененного ключа от точки беспроводного подключения к клиентам.

TKIP отвечает за увеличение размера ключа с 40 до 128 бит , а также за замену одного статического ключа WEP -ключами, которые автоматически генерируются и рассылаются сервером аутентификации. Кроме того, в TKIP используется специальная иерархия ключей и методология управления ключами, которая убирает излишнюю предсказуемость , которая использовалась для несанкционированного снятия защиты WEP -ключей.

Сервер аутентификации после получения сертификата от пользователя использует 802.1х для генерации уникального базового ключа для сеанса связи. TKIP осуществляет передачу сгенерированного ключа пользователю и точке доступа, после чего выстраивает иерархию ключей плюс систему управления. Для этого используется двусторонний ключ для динамической генерации ключей шифрования данных, которые в свою очередь используются для шифрования каждого пакета данных. Подобная иерархия ключей TKIP заменяет один ключ WEP (статический) на 500 миллиардов возможных ключей, которые будут использованы для шифрования данного пакета данных.

Как упомянуто выше, в стандарте WPA используется расширяемый протокол аутентификации EAP как основа для механизма аутентификации пользователей. Непременным условием аутентификации является предъявление пользователем свидетельства, подтверждающего его право на доступ в сеть . Для этого права пользователь проходит проверку по специальной базе зарегистрированных пользователей. Без аутентификации работа в сети для пользователя будет запрещена.

WPA может работать в двух режимах: Enterprise (корпоративный) и Pre-Shared Key (персональный).

В первом случае, хранение базы данных и проверка аутентичности по стандарту IEEE 802.1x в больших сетях обычно осуществляются специальным сервером, чаще всего RADIUS .

Во втором случае подразумевается применение WPA всеми категориями пользователей беспроводных сетей, т.е. имеет упрощенный режим, не требующий сложных механизмов. Этот режим называется WPA -PSK (Pre-Shared Key) и предполагает введение одного пароля на каждый узел беспроводной сети (точку доступа, беспроводной маршрутизатор , клиентский адаптер , мост ). До тех пор пока пароли совпадают, клиенту будет разрешен доступ в сеть . Можно заметить, что подход с использованием пароля делает WPA -PSK уязвимым для атаки методом подбора, однако этот режим избавляет от путаницы с ключами WEP , заменяя их целостной и четкой системой на основе цифробуквенного пароля.

Читайте также:  Робот пылесос hec мн290 silver

Другим важным механизмом аутентификации является проверка целостности сообщений MIC (Message Integrity Check ). Ее используют для предотвращения перехвата пакетов данных, содержание которых может быть изменено, а модифицированный пакет вновь передан по сети. MIC построена на основе мощной математической функции, которая применяется на стороне отправителя и получателя, после чего сравнивается результат. Если проверка показывает на несовпадение результатов вычислений, данные считаются ложными и пакет отбрасывается. Благодаря такому механизму могут быть ликвидированы слабые места защиты, способствующие проведению атак с использованием поддельных фреймов и манипуляцией битами.

Даже не принимая во внимания тот факт, что WEP не обладает какими-либо механизмами аутентификации пользователей как таковой, его ненадёжность состоит, прежде всего, в криптографической слабости алгоритма шифрования. Стандарт WPA / WPA2 позволяет использовать алгоритм AES – симметричный алгоритм блочного шифрования (размер блока 128 бит , ключ 128/192/256 бит ).

CCMP ( Counter Mode with Cipher Block Chaining Message Authentication Code Protocol – протокол блочного шифрования с кодом аутентичности сообщения и режимом сцепления блоков и счётчика) – протокол шифрования IEEE 802.11i, созданный для замены TKIP – обязательного протокола шифрования в WPA и WEP – как более надёжный вариант. CCMP, являясь частью стандарта 802.11i, использует алгоритм AES . В отличие от TKIP , управление ключами и целостностью сообщений осуществляется одним компонентом, построенным вокруг AES с использованием 128-битного ключа, 128-битного блока, в соответствии со стандартом шифрования FIPS-197.

Стандарт IEEE 802.11i использует концепцию повышенной безопасности ( Robust Security Network , RSN ), и это потребует изменений в аппаратной части и программном обеспечении, т.е. сеть , полностью соответствующая RSN , станет несовместимой с существующим оборудованием WEP . Сейчас пока еще поддерживается как оборудование RSN , так и WEP (на самом деле WPA / TKIP было решением, направленным на сохранение инвестиций в оборудование), но в дальнейшем устройства WEP перестанут использоваться.

IEEE 802.11i применим к различным сетевым реализациям и может задействовать TKIP , но по умолчанию RSN использует AES ( Advanced Encryption Standard ) и CCMP ( Counter Mode CBC MAC Protocol ) и, таким образом, является более мощным расширяемым решением ( AES – блочный шифр , оперирующий блоками данных по 128 бит ).

802.11i ( WPA2 ) – это наиболее устойчивое и безопасное решение, предназначенное в первую очередь для больших предприятий, где управление ключами и администрирование были главной головной болью. С 13 марта 2006 года поддержка WPA2 является обязательным условием для всех сертифицированных Wi-Fi устройств.

Производительность канала связи, как свидетельствуют результаты тестирования оборудования различных производителей, падает на 5-20% при включении как WEP -шифрования, так и WPA . Однако испытания того оборудования, в котором включено шифрование AES вместо TKIP , не показали сколько-нибудь заметного падения скорости.

WPA2 , так же как и WPA , может работать в двух режимах: Enterprise (корпоративный) и Pre-Shared Key (персональный).

WEP(Wired Equivalent Privacy) — 64-, 128-, 256- и 512-битный протокол шифрования. Более высокая стойкость сети к взлому обеспечивается большим количеством используемых бит для хранения ключа, что обеспечивает больше возможных комбинаций ключей. WEP ключ состоит из статической и динамической части (вектор инициализации повторяющийся через некоторый промежуток времени), первая 40 бит в случае 64-битного шифрования, а вторая часть 24 бит, меняющаяся в процессе работы сети.

Данные передаются в виде пакетов. Каждый пакет состоит из двух частей — заголовка и тела. В заголовке хранится служебная информация, идентификатор сети, аппаратные адреса получателя и отправителя. В теле передаются данные и значение контрольной суммы передаваемых данных, используемое получателем для проверки целостности данных.

Для каждого нового пакета применяется новый кодирующий ключ. Кодируется только тело пакета. В заголовок добавляется значение вектора инициализации соответствующего данному пакету кодирующего ключа. Содержание заголовка не кодируется и передается в открытом виде.

TKIP (Temporal Key Integrity Protocol) — протокол динамических ключей сети, которые часто меняются. При этом каждому устройству также присваивается ключ, который тоже меняется.

MIC (Message Integrity Check) — протокол проверки целостности пакетов, который защищает их от перехвата, и тоже участвует в защите информации при перенаправлении пакетов.

WPA (Wi-Fi Protected Access) — протокол шифрования, который представлен несколькими вариантами:

WPA-PSK (Pre-shared key) — для генерации ключей сети и для входа в сеть используется ключевая фраза. Оптимальный вариант для домашней или небольшой офисной сети. При его использовании необходимо ввести один пароль на каждый узел беспроводной сети (точки доступа, беспроводные маршрутизаторы, клиентские адаптеры, мосты). До тех пор, пока пароли совпадают, клиенту будет разрешен доступ в сеть.

WPA-802.1x. — вход в сеть осуществляется через сервер аутентификации. Оптимально для сети крупной компании.

WPA2 — усовершенствованный протокол WPA, где используется более стойкий AES алгоритм шифрования. По аналогии с WPA, WPA2 также делится на два типа: WPA2-PSK и WPA2-802.1x.

802.1X — стандарт безопасности, в который входят несколько протоколов:

TLS (Transport Layer Security) — протокол, который обеспечивает целостность и шифрование передаваемых данных между сервером и клиентом, их взаимную аутентификацию, предотвращая перехват и подмену сообщений.

EAP (Extensible Authentication Protocol) — протокол расширенной аутентификации, который используется совместно с RADIUS сервером в крупных сетях.

RADIUS (Remote Authentication Dial-In User Server) — сервер аутентификации пользователей по логину и паролю.

VPN (Virtual Private Network) – протокол, который можно использовать в любом типе сетей для безопасного подключения клиентов к сети через общедоступные Интернет-каналы. Для шифрования трафика в VPN чаще всего используется протокол IPSec (Internet Protocol Security), создаются безопасные «туннели» от пользователя до узла доступа или сервера. Он обеспечивает почти стопроцентную безопасность.

Существуют и дополнительные методы защиты:

Запрет доступа к настройкам точки доступа или роутера через беспроводную сеть. Активировав эту функцию можно запретить доступ к настройкам точки доступа через Wi-Fi сеть, это не защитит от перехвата трафика или от проникновения в сеть.

Фильтрация по MAC адресу — разрешает доступ в сеть необходимым адресам, если задать данную опцию на оборудовании. Точка доступа может хранить список разрешенных MAC адресов, который называется «список контроля доступа» (Access Control List, ACL), разрешая доступ только тем клиентам, чьи МАС адреса находятся в списке.

Скрытие SSID (идентификатор беспроводной сети) — сети не будет видно при сканировании Wi-Fi сетей стандартной утилитой в Windows. Для контроля доступа в каждую точку доступа помещается ESSID, без знания которого мобильная станция не сможет подключиться к точке доступа.

Ссылка на основную публикацию
Что такое синтаксический пакет
Одна из проблем, с которыми можно столкнуться при установке приложения apk на Android — сообщение: «Синтаксическая ошибка» — ошибка при...
Что отражает двоичная матрица
Представление информации в табличной форме широко распростране­но. Чаще всего мы пользуемся прямоугольными таблицами. Простейшая таблица состоит из строк и граф...
Что означают значки в погоде на айфоне
Самые интересные новости о технике Apple и не только. Что означают значки погоды на iPhone? Сегодняшняя тема весьма заинтересует многих...
Что такое синтаксическая ошибка на андроиде
При попытке распаковать приложение из APK на Android может появляться «Синтаксическая ошибка. При синтаксическом анализе пакета возникла неполадка». Это значит,...
Adblock detector