Средний квадрат скорости формула

Средний квадрат скорости формула

Так как , то, следовательно, …(11.12)

где – кинетическая энергия всех молекул газа.

Массу газа можно выразить как , тогда (12.12) запишется как ; для одного моля газа, то есть m = M, а V = V

, отсюда

Так как молярную массу можно выразить через массу одной молекулы m и число Авогадро — , то квадратичную скорость можно представить как

где — постоянная Больцмана.

При комнатной температуре молекулы кислорода, например, имеют среднеквадратическую скорость 480м/с, водорода – 1900м/с.

6. Средняя кинетическая энергия поступательного движения молекул газа.

Средняя кинетическая энергия поступательного движения одной молекулы идеального газа – она пропорциональна термодина-мической температуре и зависит только от нее, то есть температура тела есть количественная мера энергии движения молекул, из которых состоит это тело. Кроме того, связи между абсолютной температурой и средней кинетической энергией показывает, что при одинаковой температуре средние кинетические энергии молекул всех газов одинаковы, несмотря на различие масс молекул разных газов.

Кинетическая энергия газа состоящего из молекул, равна

, то есть , отсюда , где — концентрация молекул, тогда – получили уравнение состояния идеального газа. Из этих выражений видно, что если то = 0, то есть прекращается поступательное движение молекул идеального газа, а, , его давление равно нулю.

Не следует думать, что при абсолютном нуле температуры, прекращается всякое движение частиц вещества. Даже если все молекулы газа остановятся, то внутри них будут двигаться электроны, будут участвовать в движении протоны и нейтроны ядер.

Абсолютный ноль температур означает для реальной системы не отсутствие движения, но такое состояние тела, при котором дальнейшее уменьшение интенсивности этого движения за счет отдачи его энергии окружающим телам невозможно. Следовательно, при абсолютном нуле система находится в состоянии с наименьшей возможной энергией. Характер этого состояния зависит от конкретных свойств составляющих систему частиц.

7. Любая молекулярная система состоит из большого числа составных частиц (идеальный газ). Эти частицы беспорядочно движутся. Скорости каждой частицы в произвольный момент времени неизвестны. Но, оказываются разные скорости различных частиц встречаются с разными вероятностями. В этом можно убедится на опыте Штерна (1888 – 1970):

Раскаленная током нить расположена на оси двух имеющих общую ось цилиндров. Нить покрыта серебром., атомы которого

испаряясь, покидают нить и по радиусу разлетаются в разные

стороны. Во внутреннем цилиндре сделана узкая щель. Только

те атомы, которые попали в щель, достигают внутренней

поверхности внешнего цилиндра, они создают изображение щели, которое можно увидеть, если через некоторое время развернуть внутреннюю поверхность большого цилиндра. Если прибор привести во вращение вокруг общей оси, то атомы серебра, прошедшие сквозь щель, будут оседать не прямо напротив него, а с некоторым смещением. Если бы всех молекул серебра была одинакова, то и это смещение было бы одинаковым, но опыт показал распределение по скоростям.

Существует некая скорость

около которой расположе-

ны наиболее населенные

интервалы, она называется

наиболее вероятной скоро-

стью Uв и ей соответству-

ет максимум на рисунке.

Чем больше скорость частиц отличается от Uв, тем меньше число таких частиц. С увеличением возрастает наиболее вероятная скорость, больше появится быстрых частиц, вся кривая сместится вправо. Однако площадь под кривой остается постоянной (так как постоянно число частиц), кривая растягивается. Сама кривая называется: распределение Максвелла молекул по скоростям.

Применив методы теории вероятностей, Максвелл нашел функцию распределения по скоростям f (1)

Значение наиболее вероятной скорости можно найти, продифференцировав (1):

(2)

Средняя скорость молекул определяется по формуле:

(3)

Таким образом, состояние газа характеризуется следующими скоростями:

1) наиболее вероятная

2) средняя

3) Средняя квадратичная

Исходя из распределения молекул по скоростям можно определить функцию распределения молекул по энергиям теплового движения

(4)

МОЛЕКУЛЯРНАЯ ФИЗИКА

ОСНОВЫ МОЛЕКУЛЯРНО-КИНЕТИЧЕСКОЙ ТЕОРИИ

1. Основные положения молекулярно-кинетической теории, строение вещества с точки зрения МКТ.

2. Что называют атомом? Молекулой?

3. Что называют количеством вещества? Какова его единица (дайте определение)?

Читайте также:  Как сделать рендер в after effects

4. Что называют молярной массой молярным объемом?

5. Каким образом можно определить массу молекул; размер молекул.Какова примерно масса молекул и их размеры?

6. Опишите опыты, подтверждающие основные положения МКТ.

7. Что называется идеальным газом? Каким условиям он должен удовлетворять? При каких условиях реальный газ по своим свойствам близок к нему?

8. Запишите формулы для средней арифметической скорости, средней квадратичной скорости.

9. Что доказывают опыты по диффузии? Броуновскому движению? Объясните их на основе МКТ

10. Что доказывает опыт Штерна? Объясните на основе МКТ.

11. Выведите и сформулируйте основное уравнение МКТ. Какие допущения используют при выводе основного уравнения МКТ.

12. Что характеризует температура тела?

13. Формулировка и математическая запись законов Дальтона, Бойля ­ Мариотта, Гей­ Люссака, Шарля.

14. Какова физическая сущность абсолютного нуля температуры? Запишите связь абсолютной температуры с температурой по шкале Цельсия. Достижим ли абсолютный нуль, почему?

15. Как объяснить давление газов с точки зрения МКТ? От чего оно зависит?

16. Что показывает постоянная Авогадро? Чему равно ее значение?

17. Чему равно значение универсальной газовой постоянной?

18. Чему равно значение постоянной Больцмана?

19. Написать уравнение Менделеева – Клапейрона. Какие величины входят в формулу?

20. Написать уравнение Клапейрона. Какие величины входят в формулу?

21. Что называется парциональным давлением газа?

22. Что называется изопроцессом, какие изопроцессы знаете.

23. Понятие, определение, внутренняя энергия идеального газа.

24. Параметры газа. Вывод объединенного газового закона.

25. Вывод уравнения Менделеева-Клапейрона.

26. Что называется: молярной массой вещества, количеством вещества, относительной атомной массой вещества, плотностью, концентрацией, абсолютной температурой тела? В каких единицах они измеряются?

27. Давление газа. Единицы измерения давления в СИ. Формула. Приборы для измерения давления.

28. Опишите и объясните две температурные шкалы: термодинамическую и практическую.

30. Сформулируйте законы, описывающие все виды изопроцессов?

31. Начертите график зависимости плотности идеального газа от термодинамической температуры для изохорного процесса.

32. Начертите график зависимости плотности идеального газа от термодинамической температуры для изобарного процесса.

33. Чем отличается уравнение Клапейрона-Менделеева от уравнения Клапейрона?

34. Запишите формулу средней кинетической энергии идеального газа.

35. Средняя квадратичная скорость теплового движения молекул.

36. Средняя скорость хаотического движения молекул.

2. Частицы, из которых состоят вещества, называют молекулами. Частицы, из которых состоят молекулы, называют атомами.

3. Величина, которая определяет количество молекул в данном образце вещества, называется количеством вещества. один моль — это количество вещества, которое содержит столько же молекул, сколько атомов углерода содержится в 12 г углерода.

4. Моля́рная ма́сса вещества — масса одного моля вещества (г/моль) Моля́рный объём — объём одного моль вещества, величина, получающаяся от деления молярной массы на плотность.

5. Зная молярную массу, можно вычислить массу одной мо­лекулы: m0 = m/N = m/vNA = М/NA Диаметром молекулы принято считать мини­мальное расстояние, на которое им позволяют сбли­зиться силы отталкивания. Однако понятие размера молекулы является условным. Средний размер моле­кул порядка 10-10 м.

7. Идеальный газ – это модель реального газа, которая обладает следующими свойствами:
Молекулы пренебрежимо малы по сравнению со средним расстоянием между ними
Молекулы ведут себя подобно маленьким твердым шарикам: они упруго сталкиваются между собой и со стенками сосуда, никаких других взаимодействий между ними нет.

Молекулы находятся в непрекращающемся хаотическом движении. Все газы при не слишком высоких давлениях и при не слишком низких температурах близки по своим свойствам к идеальному газу. При высоких давлениях молекулы газа настолько сближаются, что пренебрегать их собственными размерами нельзя. При понижении температуры кинетическая энергия молекул уменьшается и становится сравнимой с их потенциальной энергией, следовательно, при низких температурах пренебрегать потенциальной энергией нельзя.

При высоких давлениях и низких температурах газ не может считаться идеальным. Такой газ называют реальным. (Поведение реального газа описывается законами, отличающимися от законов идеального газа.)

Читайте также:  Поиск долгов по инн физического лица

Средняя квадратичная скорость молекул — среднее квадратическое значение модулей скоростей всех молекул рассматриваемого количества газа

А если расписать универсальную газовую постоянную, как , и за одно молярную массу , то у нас получится?

В Формуле мы использовали :

— Средняя квадратичная скорость молекул

— Постоянная Больцмана

— Температура

— Масса одной молекулы

— Универсальная газовая постоянная

— Молярная масса

— Количество вещества

— Средняя кинетическая энергия молекул

— Число Авогадро

Средняя арифметическая скорость молекул опр­деляется по формуле

,

где М — молярная масса вещества.

9. Броуновское движение. Однажды в 1827 г. английский ученый Р. Броун, изучая растения при помощи микроскопа, обнаружил очень необычное явление. Плавающие на воде споры (мелкие семена некоторых растений) скачкообразно двигались без видимых на то причин. Броун наблюдал это движение (см. рисунок) несколько дней, однако так и не смог дождаться его прекращения. Броун понял, что имеет дело с неизвестным науке явлением, поэтому он очень подробно его описал. Впоследствии это явление учёные-физики назвали по имени первооткрывателя – броуновским движением.

Объяснить броуновское движение невозможно, если не предположить, что молекулы воды находятся в беспорядочном, никогда не прекращающемся движении. Они сталкиваются друг с другом и с другими частицами. Наталкиваясь на споры, молекулы вызывают их скачкообразные перемещения, что Броун и наблюдал в микроскоп. А поскольку молекулы в микроскоп не видны, то движение спор и казалось Броуну беспричинным.

Диффузия

Как же объяснить ускорение этих явлений? Объяснение одно: повышение температуры тела приводит к увеличению скорости движения составляющих его частиц.

Итак, каковы же выводы из опытов?Самостоятельное движение частиц веществ наблюдается при любой температуре. Однако при повышении температуры движение частиц ускоряется, что приводит к возрастанию ихкинетической энергии. В результате эти более «энергичные» частицы ускоряют протекание диффузии, броуновского движения и других явлений, например растворения или испарения.

10. Опыт Штерна – опыт, в котором была экспериментально измерена скорость молекул. Было доказано, что разные молекулы в газе обладают разной скоростью, а при заданной температуре можно говорить о распределении молекул по скоростям и о средней скорости молекул.

«Физика — 10 класс»

Вспомните, что такое физическая модель.
Можно ли определить скорость одной молекулы?

Идеальный газ.

У газа при обычных давлениях расстояние между молекулами во много раз превышает их размеры. В этом случае силы взаимодействия молекул пренебрежимо малы и кинетическая энергия молекул много больше потенциальной энергии взаимодействия. Молекулы газа можно рассматривать как материальные точки или очень маленькие твёрдые шарики. Вместо реального газа, между молекулами которого действуют силы взаимодействия, мы будем рассматривать его модель — идеальный газ.

Идеальный газ — это теоретическая модель газа, в которой не учитываются размеры молекул (они считаются материальными точками) и их взаимодействие между собой (за исключением случаев непосредственного столкновения).

Естественно, при столкновении молекул идеального газа на них действует сила отталкивания. Так как молекулы газа мы можем согласно модели считать материальными точками, то размерами молекул мы пренебрегаем, считая, что объём, который они занимают, гораздо меньше объёма сосуда.

В физической модели принимают во внимание лишь те свойства реальной системы, учёт которых совершенно необходим для объяснения исследуемых закономерностей поведения этой системы.

Ни одна модель не может передать все свойства системы. Сейчас нам предстоит решить задачу: вычислить с помощью молекулярно-кинетической теории давление идеального газа на стенки сосуда. Для этой задачи модель идеального газа оказывается вполне удовлетворительной. Она приводит к результатам, которые подтверждаются опытом.

Давление газа в молекулярно-кинетической теории.

Пусть газ находится в закрытом сосуде. Манометр показывает давление газа р. Как возникает это давление?

Каждая молекула газа, ударяясь о стенку, в течение малого промежутка времени действует на неё с некоторой силой. В результате беспорядочных ударов о стенку давление быстро меняется со временем примерно так, как показано на рисунке 9.1. Однако действия, вызванные ударами отдельных молекул, настолько слабы, что манометром они не регистрируются. Манометр фиксирует среднюю по времени силу, действующую на каждую единицу площади поверхности его чувствительного элемента — мембраны. Несмотря на небольшие изменения давления, среднее значение давления р практически оказывается вполне определённой величиной, так как ударов о стенку очень много, а массы молекул очень малы.

Читайте также:  Моторола droid turbo 2

Среднее давление имеет определённое значение как в газе, так и в жидкости. Но всегда происходят незначительные случайные отклонения от этого среднего значения. Чем меньше площадь поверхности тела, тем заметнее относительные изменения силы давления, действующей на данную площадь. Так, например, если участок поверхности тела имеет размер порядка нескольких диаметров молекулы, то действующая на неё сила давления меняется скачкообразно от нуля до некоторого значения при попадании молекулы на этот участок.

Среднее значение квадрата скорости молекул.

Для вычисления среднего давления надо знать значение средней скорости молекул (точнее, среднее значение квадрата скорости). Это не простой вопрос. Вы привыкли к тому, что скорость имеет каждая частица. Средняя же скорость молекул зависит от того, каковы скорости движения всех молекул.

Чем отличается определение средней скорости тела в механике от определения средней скорости молекул газа?

С самого начала нужно отказаться от попыток проследить за движением всех молекул, из которых состоит газ. Их слишком много, и движутся они очень сложно. Нам и не нужно знать, как движется каждая молекула. Мы должны выяснить, к какому результату приводит движение всех молекул газа.

Характер движения всей совокупности молекул газа известен из опыта. Молекулы участвуют в беспорядочном (тепловом) движении. Это означает, что скорость любой молекулы может оказаться как очень большой, так и очень малой. Направление движения молекул беспрестанно меняется при их столкновениях друг с другом.

Скорости отдельных молекул могут быть любыми, однако среднее значение модуля этих скоростей вполне определённое.

В дальнейшем нам понадобится среднее значение не самой скорости, а квадрата скорости — средняя квадратичная скорость. От этой величины зависит средняя кинетическая энергия молекул. А средняя кинетическая энергия молекул, как мы вскоре убедимся, имеет очень большое значение во всей молекулярно-кинетической теории. Обозначим модули скоростей отдельных молекул газа через υ1, υ2, υ3, . , υN. Среднее значение квадрата скорости определяется следующей формулой:

где N — число молекул в газе.

Но квадрат модуля любого вектора равен сумме квадратов его проекций на оси координат OX, OY, OZ.

Из курса механики известно, что при движении на плоскости υ 2 = υ 2 x + υ 2 y. В случае, когда тело движется в пространстве, квадрат скорости равен:

Средние значения величин υ 2 x, υ 2 y и υ 2 z можно определить с помощью формул, подобных формуле (9.1). Между средним значением и средними значениями квадратов проекций существует такое же соотношение, как соотношение (9.2):

Действительно, для каждой молекулы справедливо равенство (9.2). Сложив такие равенства для отдельных молекул и разделив обе части полученного уравнения на число молекул N, мы придём к формуле (9.3).

>Внимание! Так как направления трёх осей OX, OY и OZ вследствие беспорядочного движения молекул равноправны, средние значения квадратов проекций скорости равны друг другу:

Учитывая соотношение (9.4), подставим в формулу (9.3) вместо и . Тогда для среднего квадрата проекции скорости на ось ОХ получим

т. е. средний квадрат проекции скорости равен среднего квадрата самой скорости. Множитель появляется вследствие трёхмерности пространства и соответственно существования трёх проекций у любого вектора.

Скорости молекул беспорядочно меняются, но средний квадрат скорости вполне определённая величина.

Источник: «Физика — 10 класс», 2014, учебник Мякишев, Буховцев, Сотский

Основные положения МКТ. Тепловые явления — Физика, учебник для 10 класса — Класс!ная физика

Ссылка на основную публикацию
Создать новую электронную почту на яндексе бесплатно
Всем привет! С вами снова я, Алексей. В этом посте я расскажу вам о том, как создать электронную почту на...
Сколько человек сидит в одноклассниках
Mail.Ru Group исследовала и сравнила аудитории самых популярных в России социальных сетей — «Одноклассники», «Мой Мир», «ВКонтакте», Facebook и Twitter....
Сколько четырехзначных чисел можно составить из нечетных
Условие Решение 1 Решение 2 Решение 3 Поиск в решебнике Популярные решебники Издатель: Н. Я. Виленкин, В. И. Жохов, А....
Создать канал на ютубе регистрация бесплатно
Добрый день, уважаемые читатели и гости моего блога! Если вы попали на эту статью, значит хотите узнать, как зарегистрироваться в...
Adblock detector