Сумма всех простых чисел

Сумма всех простых чисел

Простое число — это целое число (положительное) из разряда натуральных чисел, которое имеет только 2 разных натуральных делителя. Если сказать по-другому, число p тогда будет простым, когда оно больше единицы и может быть разделено лишь на единицу и на себя самого — p.

Натуральные числа, большие единицы и числа, которые не являются простыми, называют составными числами. Т.о., все натуральные числа делятся на 3 класса: единица (имеет 1 делитель), простые числа (имеют 2 делителя) и составные числа (имеют больше 2-х делителей).

Начало последовательности простых чисел выглядит так:

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, …

Если представить натуральные числа как произведение простых, то это будет называться разложение на простые либо факторизация числа.

Самое большое простое число, которое известно.

Самое большое известное простое число — это 2 57885161 — 1. Это число состоит из 17 425 170 десятичных цифр и называется простое число Мерсенна (M57885161).

Некоторые свойства простых чисел.

Допустим, p — простое, и p делит ab, тогда p делит a либо b.

Кольцо вычетов Zn будет называться полем только в случае, если n — простое.

Характеристика всех полей — это нуль либо простое число.

Когда p — простое, а a — натуральное, значит, a p -a можно поделить на p (малая теорема Ферма).

Когда G — конечная группа, у которой порядок |G| делят на p, значит, у G есть элемент порядка p (теорема Коши).

Когда G — конечная группа, и p n — самая высокая степень p, делящая |G|, значит, у G есть подгруппа порядка p n , которая называется силовская подгруппа, кроме того, число силовских подгрупп соответствует pk+1 для некоего целого k (теоремы Силова).

Натуральное p > 1 будет простым лишь в случае, если (p-1)! + 1 можно подулить на p (теорема Вильсона).

Когда n > 1 — натуральное, значит, есть простое p: n 1 — целые взаимно простые числа, содержит нескончаемое число простых чисел (Теорема Дирихле о простых числах в арифметической прогрессии).

Любое простое число, которое большее тройки, можно представить как 6k+1 либо 6k-1, где k — натуральное число. Исходя из этого, когда разность нескольких последовательных простых чисел (при k>1) одинаковая, значит, она точно делится на шесть — к примеру: 251-257-263-269; 199-211-223; 20183-20201-20219.

Когда p > 3 — простое число, значит, p 2 -1 делится на 24 (работает и на нечётных чисел, которые не делятся на три).

Теорема Грина-Тао. Есть бесконечные арифметические прогрессии, которые состоят из простых чисел.

Ни одно простое число нельзя представить как n k -1, где n>2, k>1. Другими словами, число, которое следует за простым, не может быть квадратом либо более высокой степенью с основанием, которое больше двух. Можно сделать вывод, что когда простое число представлено как 2 k -1, значит k — простое.

Читайте также:  Программа для создания декларации

Ни одно простое число нельзя представить как n 2k+1 +1, где n>1, k>0. Другими словами, число, которое предшествует простому, не может быть кубом либо более высокой нечётной степенью с основанием, которое больше единицы.

Есть многочлены, у которых множество неотрицательных значений при положительных значениях переменных совпадает с множеством простых чисел. Пример:

Этот многочлен содержит 26 переменных, имеет 25. Самая низкая степень для известных многочленов представленного вида — пять при 42 переменных; самое маленькое количество переменных — десять при степени приблизительно 1,6·10 45 .

Дано целое число N. Задача состоит в том, чтобы найти сумму первых N простых чисел, которые не содержат нечетных простых чисел в качестве своей цифры.

Некоторые из таких простых чисел 2, 11, 19, 29, 41 ……

Примеры:

Input : N = 2
Output : 13
2 + 11 = 13

Input : N = 7
Output : 252

Подходить :

  • Сначала мы используем сито Эратосфена для хранения всех простых чисел.
  • Затем проверьте каждое простое число, если присутствует какая-либо нечетная простая цифра или нет.
  • Если такой цифры нет, мы добавим это простое число в наш требуемый ответ
  • Продолжайте шаг выше, пока мы не получим N таких простых чисел

Ниже приведена реализация вышеуказанного подхода:

using namespace std;

#define MAX 100005

// Найти все простые числа

vector int > addPrimes()

memset (prime, true , sizeof (prime));

for ( int p = 2; p * p

if (prime[p] == true ) <

for ( int i = p * p; i

vector int > ans;

// Сохраняем все простые числа

for ( int p = 2; p

// Функция для проверки, является ли цифра нечетным простым или нет

bool is_prime( int n)

return (n == 3 || n == 5 || n == 7);

// Функция для поиска суммы

int find_Sum( int n)

// Хранить требуемый ответ

// Получить все простые числа

vector int > v = addPrimes();

// Перебираем все простые числа

for ( int i = 0; i

// Флаг сохраняет 1, если число делает

// не содержит нечетных простых чисел

// Найти все цифры номера

// Если число не содержит нечетных простых чисел

Простые числа – это натуральные числа, их можно разделить только на два значения: единицу и себя. К натуральным относят те, которые используются во время счета, поэтому должно выполняться требование, чтобы они были положительными и целыми. Делители также не должны быть отрицательными и дробными.

Они широко применяются в криптографии, когда необходимо закодировать важную информацию от посторонних глаз. Шифрование касается каждого человека, так как используется в создании электронной почты, банковских карт. Даже мобильная связь защищается кодами.

Кроме того, используются на системах, защищающих транспортные средства от угонщиков, создают преграду для атак вирусов и взломов компьютерных сайтов. При попытке продолжить разложение простых чисел или определить закономерность появления, возникают новые способы математических расчетов.

Читайте также:  Пошаговая установка линукс минт

Простые и составные числа — что это такое

Математика предлагает начинать знакомиться с данными понятиями в средней школе, в 5 или в 6 классе.

Проверка на принадлежность к определенному множеству достаточно простая:

Простые числа можно делить только на 1 и на такое же число. Например 3 и 7 — простые числа, 3 делится на 1 и на 3, 7 делится на 1 и на 7.

Составные числа можно делить не только на себя и единицу. При этом не должно получаться остатка. Они делятся на одно или несколько значений. Например, 8 и 6 относят к составным. Восьмерка делится на 1, 2, 4, 8; шестерка – на 1, 2, 3 и 6.

Определение простых чисел позволяет исключить из их ряда единицу. Она характеризуется наличием только одного делителя, не являющегося отрицательным значением. Получить ее можно, используя только один способ, умножив саму на себя.

Простые двузначные числа определяются по внешнему виду:

Если оканчиваются четной цифрой, то точно являются составными. То же касается и значений, имеющих больше двух знаков.

Если на конце находится цифра 5, то она входит в число делителей.

Такие простые способы помогают легко классифицировать многозначные показатели.

Некоторые двузначные вводят в заблуждение с первого взгляда, если оканчиваются на единицу. Кажется, что разложить на множители их невозможно. Но есть исключения, например: 21, 81. Чем дальше, тем больше отклонений от этой закономерности.

Последовательность простых чисел

Есть целые алгоритмы, помогающие получать новое, ранее неизвестное значение.

Существуют таблицы, в которых собраны найденные числа, имеющие не больше двух делителей, например, до 200, 1000 или больше.

Последовательность можно продолжать бесконечно, начинается она так: 2, 3, 5, 7, 11, 13, 17, 19 и т. д.

Наименьшее и наибольшее простое число

Самым меньшим значением, делящимся на себя и 1, является 2. Это единственное простое значение, являющееся четным. Остальные всегда делятся на два, то есть получают третий делитель.

Простых чисел много и их количество стремится к бесконечности, потому узнать самое большое невозможно.

Нескончаемость ряда была доказана еще до нашей эры Евклидом. Он предложил перемножить все известные исследуемые значения и прибавить к ним единицу.

При его делении в любом случае будет оставаться остаток, то есть отнести к составным невозможно. Что противоречит тому факту, что были использованы все известные простые числа, в том числе и самое большое. Значит, предположение о конечности ряда является неверным.

В настоящее время известно значение, имеющее около 25 миллионов знаков. Оно относится к наибольшему из открытых наукой, это 2 82 589 933

Читайте также:  Теплэко отзывы реальных покупателей для дачи

Множество простых чисел

Множествами называются совокупности элементов, объединенных в одно целое общими свойствами.

Для изучаемых объектов к ним относятся:

принадлежность к натуральным;

наличие максимум двух делителей.

Простые числа можно определить, используя решето Эратосфена. Нужно выписать в ряд все значения, с которыми предстоит работать. Выбрать самое маленькое и вычеркнуть его, затем продолжать действие, убирая кратные ему.

Например, в ряду от 1 до 100 первым таким объектом будет 2. Поэтому и вычеркивать нужно значения, кратные двойке, то есть те, которые делятся на нее.

По окончании из оставшихся выбрать новое простое, искать кратные ему и также убирать. Повторять, пока это представляется возможным.

В итоге, все составные окажутся зачеркнутыми.

Эратосфен использовал свое открытие следующим образом. Он брал папирус, записывал на нем необходимые значения, при отборе прокалывал неподходящие острым предметом (отсюда название «решето Эратосфена»). Поэтому они как будто просеивались через сито, и в списке оставались видимыми только необходимые.

Некоторые свойства простых чисел

Выделяют свойства, объединенные в теоремы, постулаты. Многие являются основой математических правил, используемых в настоящее время.

Изучением занимается теория чисел, при использовании формул простые числа обозначаются буквой n.

Известны следующие правила:

Если рассматривать два простых числа (n), одно из которых делится на другое, то можно утверждать, что они равны.

Все являются нечетными, за исключением двойки.

Можно выделить пары, разница между которым равна 2. При их сложении получается значение, кратное трем. Их так и называют парными или близнецами. Исключение составляют две первые цифры в ряду, 3 и 5, так как сумму, полученную при их сложении, нельзя разделить на 3.

Для каждого натурального значения (N), большего единицы, существует n, превышающее его. При этом удвоенное натуральное будет больше n.

Если одно из двух N делится на n, то их произведение также будет делиться на него.

Любое N, за исключением единицы, можно отнести к n или представить в виде их произведения.

Если взять составное число и разложить его на множители n, то среди них окажется один, квадрат которого будет меньше первоначального составного.

Некоторые n имеют пары, которые можно найти, перевернув n наоборот. Например, 13 и 31, 37 и 73. То же самое касается трехзначных n: 107 и 701, 709 и 907.

Если N возвести в степень, представленную n, а затем вычесть N, то полученное значение будет делиться на используемое n. Это правило представляет собой малую теорему Ферма.

Действия с простыми числами

Можно использовать разные арифметические действия, складывать, умножать, вычитать, делить. Простые числа могут являться основанием и показателем степени.

Извлечь корень из них невозможно.

Таблица простых чисел до 1000

Таблица простых числе до 10000

Ссылка на основную публикацию
Статическая и динамическая озу
Оперативная память (Random Access Memory – RAM), т.е. память с произвольным доступом, используется центральным процессором для совместного хранения данных и...
Создать новую электронную почту на яндексе бесплатно
Всем привет! С вами снова я, Алексей. В этом посте я расскажу вам о том, как создать электронную почту на...
Создать канал на ютубе регистрация бесплатно
Добрый день, уважаемые читатели и гости моего блога! Если вы попали на эту статью, значит хотите узнать, как зарегистрироваться в...
Статусы сообщений в whatsapp
Cтатусы показывают, используют ли ваши контакты WhatsApp в настоящий момент или то время, когда они были онлайн в последний раз....
Adblock detector