Техпроцесс процессора что это

Техпроцесс процессора что это

Добрый день, уважаемые любители компьютерного железа. Сегодня мы поговорим о том, что такое техпроцесс в процессоре. На что влияет данная величина, как помогает при работе компьютера, за что отвечает и так далее.

p, blockquote 1,0,0,0,0 —>

Начать хотелось бы с того, что процессоры состоят из транзисторов. Под крышкой теплораспределителя находится сам кристалл ЦП на кремниевой подложке, в состав которого входит миллиарды миниатюрных транзисторов. О внутренностях CPU – в отдельной статье.

p, blockquote 2,0,0,0,0 —>

Их габариты настолько крошечные, что измеряются в нанометрах. Отсюда и берет свое начало величина.

Возьмем к примеру компанию AMD и ее процессорные ядра семейства Bulldozer и Liano, выполненные по нормам 32 нм. На площади кристалла размером всего 315 мм2 размещено 1,2 млрд транзисторов. Если сравнивать с более старой технологией 45 нм, в которой на подложке 346 мм2 находилось «только» 900 млн транзисторов – прогресс очевиден.

p, blockquote 4,0,1,0,0 —>

Уменьшение, а точнее оптимизация техпроцесса дает следующие преимущества:

Эволюция техпроцесса

Если покопаться в истории полупроводников 70‑х и 80‑х годов, то можно встретить устройства, разработанные по нормам техпроцесса 3 мкм. К такому технологическому прорыву впервые пришли компании Zilog в 1975 году и Intel в 1979 году соответственно.

p, blockquote 5,0,0,0,0 —>

Компании активно развивали технологии и совершенствовали литографическое оборудование.В начале-середине 90‑х, прогресс достиг новых высот и на рынке стали появляться модели вроде Intel Pentium Pro и MMX, а также знаменитая «улитка» Pentium II.

p, blockquote 6,0,0,0,0 —>

Все изделия выполнялись по нормам процесса 0,35 мкм, т.е. 350 нм. Буквально через 10 лет технологии позволили сократить размер транзистора втрое, до 130 нм, и это был прорыв.Однако культовый период пришелся на 2004 год, когда инженеры начали осваивать для себя 65 нм. Тогда мир увидел знаменитые Pentium 4, Core 2 Duo, а также AMD Phenom X4 и Turion 64 x2. В это же время рынок наводнили чипы Falcon и Jasper для Xbox 360.

p, blockquote 7,0,0,0,0 —>

Текущий период разработки

Плавно подбираемся к современным разработкам и начнем со все еще актуального процесса 32 нм – эпоха Intel Sandy Bridge и AMD Bulldozer.

p, blockquote 8,0,0,0,0 —>

Синему лагерю удалось создать кристалл с частотой до 3,5 ГГц, на который можно поместить до 4 ядер и графический чип частотой до 1,35 ГГц. Также в чип встроили северный мост, PCI‑E контроллер версии 2.0, поддержку памяти DDR3. Все ядра получили по 256 КБ кэша L2 и до 8 МБ L3. И все это размещалось на подложке 216 мм2

p, blockquote 9,1,0,0,0 —>

Красные же умудрились разместить на подложке до 16 процессорных ядер частотой до 4 ГГц с поддержкой передовых на 2011 год инструкций x86, ввести поддержку Hyper Transport и оснастить чипы поддержкой DDR3.

p, blockquote 10,0,0,0,0 —>

Переход на 22 нм осуществил только Intel, добавив своим продуктам Ivy Bridge и Haswell вроде Core i5, i7 и Xeon более высокую производительность при сниженном энергопотреблении. Архитектура не претерпела значительных изменений.Литография 14 нм подарила миру в 2017 году новый виток противостояния между AMD Ryzen и Intel Coffee Lake. В первом случае имеем совершенно новую архитектуру и признание во всем мире после многолетнего застоя. Во втором же – увеличение ядер на подложке в десктопном сегменте.

p, blockquote 11,0,0,0,0 —>

Дополнительно можно отметить снижение энергопотребления, добавление новых инструкций, снижение размера кремниевой пластины и повышение мощности в станах двух лагерей.Теперь ждем выход чипов, построенных по нормам 10 нм, который на данный момент доступен лишь в мобильном сегменте (Quallcomm Snapdragon 835/845, Apple A11 Bionic).

Читайте также:  Как узнать какой бак в стиральной машине

p, blockquote 12,0,0,0,0 —>

Зачем уменьшать техпроцесс?

Как я уже говорил выше, оптимизация литографии ведет к размещению большего числа транзисторов на подложке меньшего размера. Говоря простым языком, на одной площади можно расположить не 1, а 1,5 млрд транзисторов, что ведет к повышению производительности без увеличения тепловыделения.

p, blockquote 13,0,0,1,0 —>

Таким образом устанавливается больше ядер, вспомогательных компонентов и систем управления шинами.

Коэффициент умножения системной шины процессора также возрастает, а значит и его мощь растет.

p, blockquote 15,0,0,0,0 —>

На данный момент оптимальными процессорами, которые вобрали в себя самое лучшее из современных технологий, можно назвать Intel 8700k и AMD Ryzen 1800x. Есть конечно и более новый вариант от «красных» в лице Ryzen 2700 (12 нм), но его производительность немного скромнее.Надеемся, вы поняли суть, которую я хотели донести до вас в этой статье. В следующих обзорах мы коснемся таких понятий как разгон, нагрев, охлаждение и прочих животрепещущих вопросов, которые требуют пояснения. Оставайтесь с нами и следите за новыми публикациями. Удачи!

p, blockquote 16,0,0,0,0 —>

p, blockquote 17,0,0,0,0 —> p, blockquote 18,0,0,0,1 —>

В любом электронном устройстве, которыми мы пользуемся каждый день, есть множество чипов, каждый из которых состоит из еще большего множества транзисторов. В новостях о новых смартфонах, процессорах, видеокартах и прочей электронике можно часто встретить термин «техпроцесс» и указание количества нанометров. Что обозначает этот термин? Давайте разберемся вместе.

Для примера можно взять обычный процессор для настольного компьютера — принцип будет одинаковым и для него, и для чипсетов смартфонов, и для чипов видеокарт, и для всех остальных чипов.

Под теплораспределительной панелью, которую вы видите на картинке выше, размещен сам кристалл процессора. Он состоит из миллиардов микроскопических транзисторов, расстояние между которыми и определяет техпроцесс. Так, Intel сейчас выпускает процессоры на базе 10 нм техпроцесса (компания никак не может наладить производство 7 нм чипов), а TSMC — чипсеты для мобильных девайсов на базе 7 нм техпроцесса (Apple A12, Kirin 980 и Snapdragon 855). При этом технологии производства у них заметно отличаются: Intel со своими 10 нм может размещать на одном квадратном миллиметре площади до 100 млн транзисторов, а TSMC со своими 7 нм — лишь 66 млн.

Что же дает постепенное уменьшение (оптимизация) техпроцесса из года в год? В основе всех преимуществ — уменьшение расстояния между транзисторами, что позволяет им быстрее передавать данные и тратить на их передачу меньше энергии.

Таким образом, процессоры на одинаковой архитектуре, но произведенные с использованием разного техпроцесса, будут отличаться в следующих аспектах:

-тактовая частота (повышение производительности);
-потребление энергии;
-возможное увеличение количества ядер;
-снижение себестоимости производства;
-больше кэш-памяти, для которой на кристалле можно выделить больше места.

Краткая история развития техпроцесса

Компьютерные чипы, которые производили в семидесятых годах прошлого столетия, использовали техпроцессы, измеряемые в микронах (мкм) — 10, 8, 6, 4, 3 и 2 мкм. Каждые три года происходило уменьшение примерно в 0.7 раз. Так, 3 мкм техпроцесс начали использовать в 1975 (Zilog) и 1979 (Intel) годах.

Дальнейшее уменьшение шло довольно быстро: в 1982 году Intel достигла отметки в 1.5 мкм, в 1989 — 0.8 мкм, в 1994 — 0.6 мкм. После середины девяностых и до 2008 года каждые два года плотность транзисторов удваивалась. В 1997 Intel, IBM и TSMC достигли 350 нм, в 1998 инженеры Intel смогли освоить 250 нм, а в 1999 — уже 180 нм.

Ниже 100 нм порог снизился уже в начале «нулевых» — так, Intel Pentium 4 на архитектуре Prescott использовал техпроцесс 90 нм. Уже к 2004 году была достигнута отметка в 65 нм (Intel Core, Core 2 Duo, Celeron D и множество других процессоров), а в 2006 — 40 / 45 нм (AMD Phenom II, Athlon II и другие).

Читайте также:  Скурихин химия коньяка и бренди читать

Следующая ступень эволюции была довольно высокой — техпроцесс 32 / 28 нм Intel начала использовать лишь к 2011 (TSMC — чуть раньше, в 2010). Еще раз вдвое (22 / 20 нм) плотность увеличили уже к 2012.

В 2014 году основные игроки на рынке начали использовать в производстве микрочипов 14 / 16 нм техпроцесс и технологию FinFET (транзисторы нового типа — с вертикально расположенным затвором, который занимает еще меньше места). Первые 14 нм процессоры Intel появились в продаже уже в 2015. В 2016 на рынке появились iPhone с чипами Apple A10 (16 нм).

Переход на 10 нм начался в 2017 — этот техпроцесс используют в процессорах Apple A11 Bionic, процессорах Intel Cannon Lake и Ice Lake, а также в Qualcomm Snapdragon 835 и Snapdragon 845.

Наконец, в 2018 году мобильные чипсеты начали использовать новейший 7 нм техпроцесс. Это Apple A12 Bionic, Snapdragon 855 и Huawei HiSilicon Kirin 980. Кроме того, в 2019 7 нм техпроцесс начала использовать AMD (в видеокартах Radeon VII).

Первые образцы чипов, производимых с использованием 5 нм техпроцесса, уже изготавливаются в лабораториях TSMC. О коммерческих продуктах на их основе пока никакой информации нет. При этом к 2021 Samsung уже планирует выпускать чипы с использованием 3 нм техпроцесса и технологии GAAFET.

AMD Radeon VII — первая потребительская видеокарта, которая использует 7 нм чип

Чего ждать в ближайшие годы? Энтузиасты (а уж инвесторы — в особенности) надеются на то, что Intel наконец-то сможет преодолеть такой сложный для себя порог в 10 нм. Это позволит ей наконец-то начать выпускать и значительно более экономичные и быстрые процессоры для ПК и ноутбуков, и чипсеты нового поколения для мобильных устройств. Сейчас она не может конкурировать на этом рынке с лидерами вроде Apple, Huawei и Qualcomm.

Также 7 нм техпроцесс будут использовать в видеокартах AMD и Nvidia следующих поколений. RTX 21xx должны благодаря этому стать куда быстрее и экономичнее, а AMD в следующем поколении еще и начнет использовать совершенно новую архитектуру Navi. Кстати, свои собственные видеокарты собирается производить и Intel — правда, их выхода ждать придется, скорее всего, как минимум до 2021 года.

В общем и целом, дальнейшая оптимизация техпроцесса должна сделать наши компьютеры, смартфоны, умные часы и другие устройства еще быстрее, а их время автономной работы от батареи должно будет увеличиться (при прочих равных параметрах). Кроме того, конкуренция между разными производителями (Intel, AMD, Huawei, Apple, Qualcomm и другими) и архитектурами (x86 против ARM) должна привести к постепенному снижению цен.

Стоит ли ждать следующего скачка технологий перед покупкой нового смартфона, компьютера или комплектующих? На этот вопрос мы ответим однозначным «нет», которое перестанет быть актуальным разве что перед самым анонсом девайсов нового поколения. Зацикливаться на техпроцессе как технической характеристике не стоит — куда важнее оценить нужную вам производительность и выбрать самый выгодный вариант прямо сейчас.

Доброго времени суток.

Давайте вместе приоткроем завесу такого сложного дела как производство CPU для компьютеров. В частности, из этой статьи вы узнаете, что такое техпроцесс в процессоре и почему с каждым годом разработчики стараются его уменьшить.

Как изготавливаются процессоры?

Для начала вам стоит знать ответ на данный вопрос, чтобы дальнейшие разъяснения были понятны. Любая электронная техника, в том числе и CPU, создается на основе одного из наиболее часто используемых минералов — кристаллов кремния. Причем применяется он в данных целях уже более 50 лет.

Читайте также:  Руфус инструкция по созданию загрузочного диска

Кристаллы обрабатываются посредством литографии для возможности создания отдельных транзисторов. Последние являются основополагающими элементами чипа, так как он полностью состоит из них.

Функция транзисторов заключается в блокировке или пропуске тока, в зависимости от актуального состояния электрического поля. Таким образом, логические схемы работают по двоичной системе, то есть в двух положениях — включения и выключения. Это значит, что они либо пропускают энергию (логическая единица), либо выступают в роли изоляторов (ноль). При переключении транзисторов в CPU производятся вычисления.

Теперь о главном

Если говорить обобщенно, то под технологическим процессом понимается размер транзисторов.

Что это значит? Снова вернемся к производству процессоров.

Чаще всего применяется метод фотолитографии: кристалл покрыт диэлектрической пленкой, и из него вытравливаются транзисторы с помощью света. Для этого используется оптическое оборудование, разрешающая способность которого, по сути, и является техническим процессом. От ее значения — от точности и чувствительности аппарата — зависит тонкость транзисторов на кристалле.

Что это дает?

Как вы понимаете, чем они будут меньше, тем больше их можно расположить на чипе. Это влияет на:

  • Тепловыделение и энергопотребление. Из-за уменьшения размера элемента он нуждается в меньшем количестве энергии, следовательно, и меньше выделяет тепла.
    Данное преимущество позволяет устанавливать мощные CPU в небольшие мобильные устройства. Кстати, благодаря низкому энергопотреблению современных чипов, планшеты и смартфоны дольше держат заряд. Что касается ПК, пониженное тепловыделение дает возможность упростить систему охлаждения.
  • Численность заготовок. С одной стороны, производителям выгодно уменьшать техпроцесс, потому что из одной заготовки получается большее количество продукции. Правда, это лишь следствие утончения техпроцесса, а не преследование выгоды, потому что с другой стороны, чтобы снизить размер транзисторов, необходимо более дорогое оборудование.

  • Производительность чипа. Чем больше он будет иметь элементов, тем быстрее будет работать, при том, что его физический размер останется прежним.

Техпроцесс в числах и примерах

Измеряется технологический процесс в нанометрах (нм). Это 10 в -9 степени метра, то есть один нанометр является миллиардной его частью. В среднем, современные процессоры производятся по техпроцессу 22 нм.

Можете себе представить, сколько транзисторов умещается на процессоре. Чтобы вам было понятнее, на площади среза человеческого волоса могут разместиться 2000 элементов. Хоть чип и миниатюрный, но явно больше волоска, поэтому может включать в себя миллиарды транзисторных затворов.

Хотите знать точнее? Приведу несколько примеров:

  • В процессорах фирмы AMD, а именно Trinity, Llano, Bulldozer, техпроцесс составляет 32 нм. В частности, площадь кристалла последнего — 315 мм2, где располагаются 1,2 млрд. транзисторов.
    Phenom и Athlon того же производителя выполнены по техпроцессу 45 нм, то есть имеют 904 млн. при площади основания 346 мм2.

  • У компании Intel есть чипы по стандарту 22 нм — это семейство Ivy Bridge (Intel Core ix — 3xxx). Для наглядности: Core i7 – 3770K обладает 1,4 млрд. элементов, при том, что размер его кристалла всего 160 мм.
    У этого же бренда есть и 32-нанометровая продукция. Речь идет об Intel Sandy Bridge (2xxx). На площади 216 мм2 она умещает 1,16 млрд. транзисторов.

К слову, все, что вы узнали о техпроцессах для центральных компьютерных аппаратов, применимо и к графическим устройствам. Например, данное значение в видеокартах AMD (ATI) и Nvidia составляет 28 нм.

Теперь вы знаете больше о cpu и в частности, что такое техпроцесс в процессоре. Возвращайтесь за новой информацией.

Ссылка на основную публикацию
Тарол волкова от тараканов отзывы
ЗДОРОВЬЕ И КРАСОТА ИЗ СИБИРИ Препарат нового поколения, обеспечивающий 100% эффект против тараканов и совершенно безопасный для человека и животных....
Статическая и динамическая озу
Оперативная память (Random Access Memory – RAM), т.е. память с произвольным доступом, используется центральным процессором для совместного хранения данных и...
Статусы сообщений в whatsapp
Cтатусы показывают, используют ли ваши контакты WhatsApp в настоящий момент или то время, когда они были онлайн в последний раз....
Тачки для gta sa
В этом разделе сайта вы можете скачать машины для GTA San Andreas. Пользователи очень любят скачивать моды машин именно с...
Adblock detector