Этот раздел описывает тригонометрические, гиперболические и показательные функции Mathcad вместе с обратными им. Здесь также описываются встроенные функции Бесселя.
Тригонометрические функции и обратные им.
Тригонометрические функции Mathcad и обратные им определены для любого комплексного аргумента. Они также возвращают комплексные значения везде, где необходимо. Результаты для комплексных значений вычисляются с использованием тождеств:
Для применения этих функций к каждому элементу вектора или матрицы используйте оператор векторизации.
Обратите внимание, что все эти тригонометрические функции используют аргумент, выраженный в радианах. Чтобы перейти к градусам, используется встроенная единица deg. Например, чтобы вычислить синус 45 градусов, введите sin(45*deg).
Имейте в виду, что из-за ошибок округления, свойственных машинной арифметике, Mathcad может возвращать очень большое число в той точке, где находится особенность вычисляемой функции. Вообще, необходимо быть осторожным при вычислениях в окрестности таких точек.
sin(z) | Возвращает синус z. В прямоугольном треугольнике это — отношение длины противолежащего катета к длине гипотенузы. |
cos(z) | Возвращает косинус z. В прямоугольном треугольнике это — отношение длины прилежащего катета к длине гипотенузы. |
tan(z) | Возвращает (sin(z)/cos(z)), тангенс z. В прямоугольном треугольнике это — отношение длины противолежащего катета к длине прилежащего катета; z не должен быть кратным p /2 . |
csc(z) | Возвращает 1/sin(z), косеканс z; z не должен быть кратным p . |
sec(z) | Возвращает 1/cos(z), секанс z; z не должен быть кратным p /2. |
cot(z) | Возвращает 1/tan(z), котангенс z; z не должен быть кратным p . |
Обратные тригонометрические функции, приведенные ниже, возвращают угол в радианах между 0 и 2 p . Чтобы преобразовать этот результат в градусы, можно также пользоваться встроенной единицей deg или напечатать deg в поле единиц.
Из-за ошибок округления, свойственных машинной арифметике, в результате вычисления atan достаточно большого числа получается значение . Как правило, лучше всего избегать численных вычислений около таких особенностей.
asin(z) | Возвращает угол (в радианах), чей синус — z. |
acos(z) | Возвращает угол (в радианах), чей косинус — z. |
atan(z) | Возвращает угол (в радианах), чей тангенс — z. |
Гиперболические функции sinh и cosh определяются формулами:
Эти функции также могут использовать комплексный аргумент и возвращать комплексные значения. Гиперболические функции тесно связаны с тригонометрическими функциями. Справедливы формулы:
sinh(iz)=i
sin(z)cosh(i
z)=cos(z)
sinh (z) | Возвращает гиперболический синус z. |
cosh (z) | Возвращает гиперболический косинус z. |
tanh (z) | Возвращает sinh(z)/cosh(z), гиперболический тангенс z. |
csch (z) | Возвращает 1/sinh(z), гиперболический косеканс z. |
sech (z) | Возвращает 1/cosh(z), гиперболический секанс z. |
coth (z) | Возвращает 1/tanh(z), гиперболический котангенс z. |
asinh (z) | Возвращает число, чей гиперболический синус — z. |
acosh (z) | Возвращает число, чей гиперболический косинус — z. |
atanh (z) | Возвращает число, чей гиперболический тангенс — z. |
Логарифмические и показательные функции
Логарифмические и показательные функции Mathcad могут использовать комплексный аргумент и возвращать комплексные значения. Значения экспоненциальной функции для комплексного аргумента вычисляются с применением формулы
e x+iy =e x (cos(y) + isin(y))
Вообще говоря, значения натурального логарифма даются формулой
ln(x + iy)=ln|x + i
y|+ atan(y/x)
i + 2
n
p
i
В Mathcad функция ln возвращает значение, соответствующее n = 0. А именно:
ln(x + iy)=ln|x + i
y|+ atan(y/x)
i
Оно называется основным значением логарифма. Рисунок 1 иллюстрирует некоторые основные свойства логарифма.
exp(z) | Возвращает e в степени z. |
ln(z) | Возвращает натуральный логарифм z. (z![]() |
log(z) | Возвращает логарифм z по основанию 10. (z![]() |
На Рисунке 1 показано, как можно использовать эти функции для вычисления логарифма по любому основанию.
Рисунок 1: Использование логарифмических функций.
Эти функции обычно возникают как решения для волнового уравнения, подчиненного цилиндрическим граничным условиям.
Функции Бесселя первого и второго рода, Jn(x) и Yn(x), являются решениями для дифференциального уравнения
Модифицированные функции Бесселя первого и второго рода, In(x) и Kn(x), являются решениями для немного видоизмененного уравнения:
J0(x) | Возвращает J(x); x вещественный. |
J1(x) | Возвращает J1(x); x вещественный. |
Jn(m, x) | Возвращает Jn(x); x вещественный, 0![]() ![]() |
Y0(x) | Возвращает Y(x); x вещественный, x > 0. |
Y1(x) | Возвращает Y1(x); x вещественный, x > 0. |
Yn(m, x) | Возвращает Yn(x). x > 0, 0![]() ![]() |
I0(x) | Возвращает I(x); x вещественный. |
I1(x) | Возвращает I1(x); x вещественный. |
In(m, x) | Возвращает In(x); x вещественный, 0![]() ![]() |
K0(x) | Возвращает K(x); x вещественный, x > 0. |
K1(x) | Возвращает K1(x); x вещественный, x > 0. |
Kn(m, x) | Возвращает Kn(x). x > 0, 0![]() ![]() |
Следующие функции возникают в широком круге задач.
erf(x) | Возвращает значение интеграла ошибок в x: |
x должен быть вещественным.
Для комплексных z значения — аналитическое продолжение вещественной функции. Гамма-функция Эйлера неопределена для z= 0,-1,-2, .
Гамма-функция Эйлера удовлетворяет рекуррентному соотношению
Откуда следует для положительных целых z:
Интеграл ошибок часто возникает в статистике. Он может также быть использован для определения дополнения интеграла ошибок по формуле:
erfc(x) := 1 — erf(x)
Исправляем ошибки: Нашли опечатку? Выделите ее мышкой и нажмите Ctrl+Enter
Встроенные функции и ключевые слова
В этом приложении дан список основных встроенных функций Mathcad. В приведенных ниже функциях для систем класса Mathcad используются следующие обозначения:
- х и у – вещественные числа;
- z – вещественное либо комплексное число;
- m, n, i, j и k – целые числа;
- v, u и все имена, начинающиеся с v – векторы;
- А и B – матрицы либо векторы;
- М и N – квадратные матрицы;
- F – вектор-функция;
- file – либо имя файла, либо файловая переменная, присоединенная к имени файла.
Все углы в тригонометрических функциях выражены в радианах. Многозначные функции и функции с комплексным аргументом всегда возвращают главное значение. Имена приведенных функций нечувствительны к шрифту, но чувствительны к регистру – их следует вводить с клавиатуры в точности, как они приведены. Все функции возвращают указанное для них значение
Я точно не знаю, есть ли какая-нибудь опция, которая позволяет переводить аргумент тригонометрических функций из "радиан" в "градусы".
Но есть другой способ (подход с математической точки зрения) :
В маткад встроено число pi, а как известно это 180 градусов. Поэтому можешь использовать следующую пропорцию:
180 * y = pi * x;
y = (pi / 180) * x, где x — это твой аргумент в градусах.
Теперь можешь в любую тригонометрическую функцию подставлять аргумент не X, а (pi / 180) * X, чтобы функция правильно "понимала" аргумент и вычисляла значение.