Угол между высотами треугольника

Угол между высотами треугольника

Как найти угол между высотами треугольника? Зависит ли величина угла от вида треугольника?

Один из углов, образованный высотами треугольника, проведёнными из двух его вершин, равен углу при третьей вершине.

Другой угол равен сумме углов треугольника, из вершин которых проведены высоты.

Рассмотрим остроугольный треугольник ABC.

Пусть AK и CF — его высоты.

Так как сумма углов четырёхугольника равна 360°, то в 4-угольнике BKPF

откуда ∠FPK+∠FBK=180° и ∠FPK=180°-∠FBK.

∠FPK+∠KPC=180° (как смежные).

∠FPK=180°-∠FBK=180° -(180° -(∠BAC+∠ACB))=∠BAC+∠ACB.

Прямоугольные треугольники BCF и PKC подобны по общему острому углу C. Следовательно, ∠KPC=∠FBC.

Если треугольник ABC — тупоугольный, рассуждения и вывод аналогичны.

Утверждение верно и для прямоугольного треугольника.

То есть для любого треугольника ABC один из углов между высотами, проведёнными из вершин A и C, равен углу B, другой — сумме углов A и C.

В частности, один угол между высотами равностороннего треугольника равен 60°, другой — 120°:

Типы треугольников

По величине углов

По числу равных сторон

Вершины углы и стороны треугольника

Свойства углов и сторон треугольника

Сумма углов треугольника равна 180°:

В треугольнике против большей стороны лежит больший угол, и обратно. Против равных сторон лежат равные углы:

если α > β , тогда a > b

если α = β , тогда a = b

Сумма длин двух любых сторон треугольника больше длины оставшейся стороны:

a + b > c
b + c > a
c + a > b

Теорема синусов

Стороны треугольника пропорциональны синусам противолежащих углов.

a = b = c = 2R
sin α sin β sin γ

Теорема косинусов

Квадрат любой стороны треугольника равен сумме квадратов двух других сторон треугольника минус удвоенное произведение этих сторон на косинус угла между ними.

a 2 = b 2 + c 2 — 2 bc · cos α

b 2 = a 2 + c 2 — 2 ac · cos β

c 2 = a 2 + b 2 — 2 ab · cos γ

Теорема о проекциях

Для остроугольного треугольника:

a = b cos γ + c cos β

b = a cos γ + c cos α

c = a cos β + b cos α

Формулы для вычисления длин сторон треугольника

Медианы треугольника

Свойства медиан треугольника:

В точке пересечения медианы треугольника делятся в отношении два к одному (2:1)

Медиана треугольника делит треугольник на две равновеликие части

Треугольник делится тремя медианами на шесть равновеликих треугольников.

Формулы медиан треугольника

Формулы медиан треугольника через стороны

ma = 1 2 √ 2 b 2 +2 c 2 — a 2

mb = 1 2 √ 2 a 2 +2 c 2 — b 2

mc = 1 2 √ 2 a 2 +2 b 2 — c 2

Биссектрисы треугольника

Свойства биссектрис треугольника:

Биссектриса треугольника делит противолежащую сторону на отрезки, пропорциональные прилежащим сторонам треугольника

Угол между биссектрисами внутреннего и внешнего углов треугольника при одной вершине равен 90°.

Формулы биссектрис треугольника

Формулы биссектрис треугольника через стороны:

la = 2√ bcp ( p — a ) b + c

lb = 2√ acp ( p — b ) a + c

lc = 2√ abp ( p — c ) a + b

где p = a + b + c 2 — полупериметр треугольника

Формулы биссектрис треугольника через две стороны и угол:

la = 2 bc cos α 2 b + c

lb = 2 ac cos β 2 a + c

lc = 2 ab cos γ 2 a + b

Высоты треугольника

Свойства высот треугольника

Формулы высот треугольника

ha = b sin γ = c sin β

hb = c sin α = a sin γ

Читайте также:  Материал диффузора какой лучше

hc = a sin β = b sin α

Окружность вписанная в треугольник

Свойства окружности вписанной в треугольник

Формулы радиуса окружности вписанной в треугольник

r = ( a + b — c )( b + c — a )( c + a — b ) 4( a + b + c )

Окружность описанная вокруг треугольника

Свойства окружности описанной вокруг треугольника

Формулы радиуса окружности описанной вокруг треугольника

R = S 2 sin α sin β sin γ

R = a 2 sin α = b 2 sin β = c 2 sin γ

Связь между вписанной и описанной окружностями треугольника

Средняя линия треугольника

Свойства средней линии треугольника

MN = 1 2 AC KN = 1 2 AB KM = 1 2 BC

MN || AC KN || AB KM || BC

Периметр треугольника

Периметр треугольника ∆ ABC равен сумме длин его сторон

Формулы площади треугольника

Формула Герона

S = a · b · с
4R
S = p · r

Равенство треугольников

Признаки равенства треугольников

Первый признак равенства треугольников — по двум сторонам и углу между ними

Второй признак равенства треугольников — по стороне и двум прилежащим углам

Третий признак равенства треугольников — по трем сторонам

Подобие треугольников

∆MNK => α = α 1, β = β 1, γ = γ 1 и AB MN = BC NK = AC MK = k ,

где k — коэффициент подобия

Признаки подобия треугольников

Первый признак подобия треугольников

Второй признак подобия треугольников

Третий признак подобия треугольников

Любые нецензурные комментарии будут удалены, а их авторы занесены в черный список!

Добро пожаловать на OnlineMSchool.
Меня зовут Довжик Михаил Викторович. Я владелец и автор этого сайта, мною написан весь теоретический материал, а также разработаны онлайн упражнения и калькуляторы, которыми Вы можете воспользоваться для изучения математики.

Хочешь подготовиться к ОГЭ или ЕГЭ по математике на отлично?

Хочешь проверить свои силы и узнать результат насколько ты готов к ЕГЭ или ОГЭ?

Важное замечание!
Если вместо формул ты видишь абракадабру, почисти кэш. Как это сделать в твоем браузере написано здесь: «Как почистить кэш браузера».

Что такое высота треугольника?

Высота – линия, проведённая из вершины треугольника перпендикулярно противоположной стороне.

На этом рисунке – высота .

Но иногда высота ведёт себя, как непослушный ребенок – «выбегает» из треугольника. Это бывает в тупоугольном треугольнике.

И тогда получается так:

В общем, не нужно пугаться, если основание высоты оказалось не на стороне треугольника, а «за» треугольником, на продолжении стороны. Как же решать задачи, в которых участвует высота ? Нужно стремиться применить какие-нибудь знания о прямоугольном треугольнике – ведь где высота – там и прямой угол.

Вот есть, скажем, задача:

В треугольнике с тупым углом проведена высота . Найти , если , , .

Смотри: из-за того, что угол – тупой, высота опустилась на продолжение стороны , а не на саму сторону.

Теперь давай увидим во всём этом два прямоугольных треугольника.

Смотри их целых два:

Применяем теорему Пифагора к треугольнику :

А теперь теорема Пифагора для :

Теперь осталось только заметить, что .

А теперь давай зададимся вопросом: а сколько вообще высот у треугольника? Конечно, три! И вот, есть такое утверждение, доказывать которое мы здесь не будем, но знать его нужно, тем более, что запоминается оно просто:

Читайте также:  Как удалить файл без мышки на ноутбуке
В любом треугольнике все три высоты (или их продолжения) пересекаются в одной точке.

Смотрим, как это бывает:

a) Сами высоты пересекаются:

b) Пересекаются продолжения:

Ну вот, про высоту и запоминать-то нужно всего ничего:

  • Задача про высоту часто решается с помощью знаний о прямоугольном треугольнике.
  • Три высоты (или три продолжения) пересекаются в одной точке.
    (Но! Это НЕ центр НИКАКОЙ окружности )

ВЫСОТА ТРЕУГОЛЬНИКА. СРЕДНИЙ УРОВЕНЬ

Высота треугольника – линия, проведённая из вершины треугольника перпендикулярно противоположной стороне.

Обрати внимание, что, в отличие от биссектрисы и медианы, высота может находиться вне треугольника. Вот так, например:

Немного о терминологии:основанием высоты называют ту точку, в которой высота пересекает противоположную сторону (или её продолжение).

Задачи, связанные с высотой, часто решаются при помощи знаний о прямоугольном треугольнике. Но попадаются задачи и похитрее, при решении которых лучше обладать дополнительными знаниями заранее, а не выводить их «с нуля». Сейчас мы обсудим некоторые из них.

В треугольнике проведено две высоты

Первый «неожиданный факт»:

Почему бы это? Да очень просто! У них общий угол и оба – прямоугольные. Значит, подобны по двум углам.

Второй «неожиданный» факт:

Здесь тоже подобие по двум углам: (как вертикальные) и по прямому углу.

Третий, по–настоящему неожиданный факт:

Вот это уже интереснее, правда? Давай разбираться, почему так.

  • Во-первых, конечно, у этих треугольников есть одинаковый (и даже общий) угол .
  • А во–вторых …ты помнишь ещё первый "неожиданный" факт? Ну, что ? Вспоминаем и применяем!

Запишем отношения соответствующих сторон.

Итак, .Следовательно,
Ух, да это же – отношение сторон для треугольников и !

В итоге мы получили, что у треугольников и

  1. Угол – общий;
  2. Отношение сторон, заключающих этот угол – одинаковы: .

Значит, мы получили, что:

Но самое интересное ещё впереди!

Каков же коэффициент подобия этих треугольников? То есть чему же равно это самое отношение ?

Где наши знания о прямоугольном треугольнике? Что такое ? Катет, прилежащий к углу . А что такое ? Гипотенуза!

Потрясающе, не правда ли?

Давай сформулируем ещё раз, чтобы лучше запомнить:

Ну вот, две высоты в треугольнике рассмотрены. А теперь…

В треугольнике проведены три высоты.

Как и для медиан, и для биссектрис, для высот треугольника верно следующее утверждение:

В любом треугольнике три высоты или их продолжения пересекаются в одной точке.

Доказывать это утверждение мы здесь, пожалуй, не будем.

Давай просто нарисуем, чтобы понять, как это бывает «высоты или их продолжения».

  1. Треугольник остроугольный – тогда пересекаются сами высоты
  2. Треугольник тупоугольный – тогда пересекаются продолжения высот
Читайте также:  Приложения для считывания калорий

Что же полезного мы ещё не обсудили?

Угол между высотами.

Давай узнаем, вдруг угол между высотами можно как–то выразить через углы треугольника? Давай рассмотрим остроугольный треугольник.

Итак, нам хотелось бы найти . Смотрим на . Замечаем, что наш – внешний угол в этом треугольнике. Значит, .

Чему же равны и ?

Смотри: из выходит, что . Конечно, таким же образом из получается, что .

Но что же это такое? Ведь сумма угла углов треугольника — ! Значит, .

Итак, что получилось?

Угол между высотами в остроугольном треугольнике равен углу между сторонами, к которым эти высоты проведены.

А как же дело обстоит в тупоугольном треугольнике? Давай смотреть…очень внимательно!

Представим, что у нас «главный» не , а .

Тогда оказывается, что прямые , и – высоты в . Но уже остроугольный (так как все высоты оказались внутри), а про остроугольный треугольник мы уже всё знаем: . НО!

Значит, для тупоугольного треугольника:

И ещё кое–что:

Вернёмся–ка к остроугольному треугольнику. Отметим на рисунке равные углы:

Что видим теперь? Ещё подобные треугольники!

Как от двух линий вообще могут получиться столько подобных треугольников?!

Но тем не менее…

Видишь, какое богатство? И всё это может быть использовано в задачах!

Ну вот, теперь ты узнал что-то новенькое про высоты треугольника. Теперь пробуй применять в задачах всё это – и соображение о том, что высота образует прямоугольный треугольник, и простые подобия прямоугольных треугольников, получающихся при пересечении двух высот, и подобие похитрее — которое с косинусом, и то, что угол между высотами равен углу между сторонами…

Главное, ты не старался просто запоминать все эти факты, а осознай, что их можно очень просто вывести. И тогда, если ты будешь точно знать, например? что две проведённые высоты приносят кучу бонусов в виде всяких подобий, то ты непременно и сам получишь все эти бонусы, а заодно – решение своей задачи!

ВЫСОТА ТРЕУГОЛЬНИКА. КОРОТКО О ГЛАВНОМ

Высота – линия, проведённая из вершины треугольника перпендикулярно противоположной стороне.

Три высоты любого треугольника пересекаются в одной точке.

Высоты треугольника обратно пропорциональны сторонам, на которые они опущены: .

Способы вычисления длины высоты, проведенной к стороне BC:

1) Через сторону и угол треугольника: .

2) Через все 3 стороны треугольника:

где — полупериметр треугольника: .

3) Через сторону и площадь треугольника: .

4) Через стороны треугольника и радиус описанной окружности:
,

где — радиус описанной окружности.

ОСТАВШИЕСЯ 2/3 СТАТЬИ ДОСТУПНЫ ТОЛЬКО УЧЕНИКАМ YOUCLEVER!

Стать учеником YouClever,

Подготовиться к ОГЭ или ЕГЭ по математике по цене "чашка кофе в месяц",

А также получить бессрочный доступ к учебнику "YouClever", Программе подготовки (решебнику) "100gia", неограниченному пробному ЕГЭ и ОГЭ, 6000 задач с разбором решений и к другим сервисам YouClever и 100gia.

Ссылка на основную публикацию
Тонны в сутки в кг в секунду
Сколько Килограмм в секунду в Метрическая тонна в сутки: 1 Килограмм в секунду = 86.4 Метрическая тонна в сутки 1...
Тарол волкова от тараканов отзывы
ЗДОРОВЬЕ И КРАСОТА ИЗ СИБИРИ Препарат нового поколения, обеспечивающий 100% эффект против тараканов и совершенно безопасный для человека и животных....
Тачки для gta sa
В этом разделе сайта вы можете скачать машины для GTA San Andreas. Пользователи очень любят скачивать моды машин именно с...
Тонер для заправки картриджей canon 725
Совместимость: Картридж Canon 728 подходит к принтерам MF-4410, 4430, 4450, 4550, 4570, 4580, 4730, 4750, 4780, 4870, 4890. Аналог —...
Adblock detector